Appendix B Value Engineering Report

This report consists of three parts. Click HERE to access Parts 1 and 2.

Kentucky
Transportation
Cabinet

State of Ohio Department of Transportation

BRENT SPENCE BRIDGE REPLACEMENT/REHAB/LITATION PROJ ECT
 ODOT Project HAM-71/75-0.00/0.22, PID 75119
 KYTC PROJ ECT ITEM NO. 6-17
 Project Development Process Step 6

FINAL - Value Engineering Study Report
October 2009

Design Engineering Consultant

Value Engineering Consultant

Ms. G. Jeanne Braxton
Value Engineering Coordinator, Management Analyst Supvr. II
State of Ohio, Department of Transportation
1980 West Broad Street
Columbus, Ohio 43223
re: ODOT Project HAM-71/75-0.00/0.22, PID 75119
KYTC Project Item No. 6-17
Brent Spence Bridge Replacement/Rehabilitation Project
Final Value Engineering Study Report
Dear Ms. Braxton:

Lewis \& Zimmerman Associates is pleased to submit 15 copies of the referenced final report on the value engineering (VE) study that took place on 24-26 August, 2009. The VE study focused on the project documents being developed by Parsons Brinckerhoff.

During the workshop the team identified and developed several betterments, alternatives, and design suggestions which provide opportunities to improve the value of the project. Of particular interest are those alternatives related to improving access to central business districts and adjacent communities in Covington, KY and Cincinnati, OH; increasing the utilization of the existing Clay Wade Bailey Bridge; reducing impacts to 4(f) and 6(f) resources; and adjusting lane configurations to reduce the width of the new bridge by one lane per deck as detailed in Section Two of this report.

We appreciate this opportunity to work with you and the ODOT, KYTC, and FHWA participants on this important project for the Ohio-Kentucky-Indiana Regional Council of Governments, and the cities of Covington, Kentucky, and Cincinnati, Ohio. Please feel free to contact me should you or any reviewer have questions concerning the information presented.

Sincerely yours,
LEWIS AND ZIMMERMAN ASSOCIATES, INC.
an ARCADIS company

Stephen G. Havens, PE, CVS
Senior Project Manager
Attachment

Lewis \& Zimmerman Associates
9861 Broken Land Parkway Suite 254
Columbia, Maryland 21046
Tel: 301.984 .9590
Fax: 410.381.0109
email: info@lza.com
www.lza.com

Date:

October 23, 2009

Contact:

Stephen Havens
Phone:
608.438.8227

Email:
shavens@lza.com
Our ref:
MY096502.0000

TABLE OF CONTENTS

SECTION ONE - EXECUTIVE SUMMARY

Introduction 1
Project Description 2
Project Schedule and Construction Costs 5
Concerns and Objectives 6
Results of the Study 7
Implementation 9
Summary of VE Alternatives` 10
SECTION TWO - STUDY RESULTS
Introduction 14
Key Issues 15
Study Objectives 16
Results of the Study 16
Evaluation of Alternatives and Design Suggestions 18
Value Engineering Alternatives 19
SECTION THREE - PROJECT DESCRIPTION
Need and Purpose 87
Project Location 88
Existing Conditions 88
Feasible Alternatives 90
Hybrid Alternative CD 90
Alternative E 91
Project Schedule and Construction Costs 92
SECTION FOUR - VALUE ANALYSIS \& CONCLUSIONS
Introduction 100
Preparation Effort 100
Value Engineering Workshop Effort 102
Post Workshop Effort 105
Value Engineering Workshop Agenda 106
Value Engineering Workshop Participants 110
Economic Data 118
Cost Model 119
Function Analysis 122
Creative Idea Listing and Evaluation of Ideas 126

EXECUTIVE SUMMARY

INTRODUCTION

This value engineering (VE) study report documents the events and results of the VE study conducted by Lewis \& Zimmerman Associates, Inc. (LZA) for the Ohio Department of Transportation (ODOT) and the Kentucky Transportation Cabinet (KYTC). The subject of the study was the Brent Spence Bridge Replacement/Rehabilitation Project (ODOT Project HAM-71/75-0.00/0.22, PID 75119 and KYTC Project Item No. 6-17). The project is being planned for ODOT and KYTC by a team led by Parsons Brinckerhoff.

The VE workshop was conducted August 24-26, 2009, at the Kentucky Transportation Cabinet District 6 Office in Ft. Mitchell, Kentucky and followed the six-phase VE Job Plan:

- Information Phase
- Function Identification and Analysis Phase
- Creative Phase
- Evaluation Phase
- Development Phase
- Presentation Phase

The multidisciplinary team comprised professionals with highway design, geometrics, structural engineering, traffic control, construction, transportation engineering, and geotechnical engineering experience and a working knowledge of VE procedures. The following is a list of the VE team members:

Participant	Specialization	Affiliation
Stefan Spinosa	Highway Design	
John Eckler	Oighway Design	
ODYT District \#8 Project Manager		
Rob Hans	Kighway Design	
John Otis	KYTC District \#6 Project Manager \#6 Chief Engineer	
Walter Bernau	Construction/MOT	ODOT District \#8 Production
Reynaldo Stargell	MOT	ODOT District \#8 Construction
Jay Hamilton	Traffic	ODOT C.O. Traffic Engineering
J.C. Pyles	Structures	ODOT District \#8 Planning \& Programming
Chris Howard	Structures	KYTC Structural Design Office
Jeff Crace	Structures	ODOT District \#8 Production
Darrin Beckett	Geotechnical	ODOT C.O. Structural Engineering
Joe Smithson	Geotechnical	KYTC C.O. Division of Materials
Kevin Rust	Construction	ODOT District \#8 Production
Nasby Stroop	Construction	KYTC District \#6 Construction
Keith Smith	Environmental	KYTC C.O. Construction
Bernadette DuPont	Transportation	ODOT District \#8 Planning and Programming
Scott Wolf	Transportation	Kentucky FHWA
Siamak Shafaghi	VE Coordinator	KYTC C.O. Production
Jeanne Braxton	VE Coordinator	ODOT C.O. Office of Production
Stephen Havens, CVS	VE Team Leader	Lewis \& Zimmerman Associates

PROJECT DESCRIPTION

The project is located along a seven mile segment of I-75 within the Commonwealth of Kentucky and the State of Ohio. The southern limit of the project is 2,300 feet south of the midpoint of the interchange of I-75 and Dixie Highway (US 127/US 42/US 25) in Kentucky (KY SLM $187.2+/$-). The northern limit of the project is 1,500 feet north of the midpoint of the interchange of I-75 and the Western Hills Viaduct in Ohio (OH SLM $2.70+/-$). The eastern and western limits of the project follow the existing alignment of I-75. In Kentucky, the project area is a 1,500-ft.-wide corridor centered on I-75 south of the City of Covington. See Figure 1: Project Area below.

Figure 1: Project Area

The comparative analysis (ODOT Project Development Process Step 5) led to the recommendation of carrying forward two feasible alternatives. The two feasible alternatives consist of Alternative E and a combination of Alternatives C and D (Hybrid Alternative CD). Based on the analysis completed and feedback as part of community input, it was also recommended that certain design elements of Alternative G be incorporated into the two feasible alternatives in Step 6 of the Ohio Department of Transportation's Project Development Process (See Section 7.7 of the Conceptual Alternative Study). Additionally, the two feasible alternatives will be designed to provide three lanes in each direction on I-75.

HYBRID ALTERNATIVE CD

Hybrid Alternative CD uses the existing I-71/I-75 alignment from the southern project limits at the Dixie Highway Interchange north to the Kyle's Lane Interchange. The Dixie Highway and Kyle's Lane interchanges would be modified slightly to accommodate a collector-distributor roadway, which would be constructed along both sides of I-71/I-75 between the two interchanges. North of the Kyle's Lane Interchange, the alignment shifts to the west to accommodate additional I-71/I-75 travel lanes. Between Kyle's Lane and KY 12th Street, six lanes would be provided in each direction for a total of 12 travel lanes. Near KY 12th Street, the alignment separates into three routes for I-71, I-75 and a local collectordistributor roadway.

Access into Covington from the interstate would be accomplished by the local collector-distributor roadway; at KY 12th Street for northbound traffic and at KY 9th Street for southbound traffic. Direct access to I-71 from Covington would be provided at Pike Street with traffic to I-75 northbound using the collector-distributor roadway through downtown Cincinnati and connecting at the Ezzard Charles merge. Access for southbound interstate traffic is located at KY 12th Street. Bullock Street would be extended north from Pike Street to KY 9th, 5th, and 4th streets and Jillian's Way would be extended north from Pike Street to KY 9th, 5th, 4th, and 3rd streets. A U-turn before the KY 9th Street intersection would allow local southbound traffic to turn and travel northbound to KY 3rd, 4th, and 5th streets.

A new double deck bridge would be built just west of the existing Brent Spence Bridge to carry northbound and southbound I-75 (three lanes in each direction), two lanes for southbound I-71 and two lanes for southbound local traffic. The existing Brent Spence Bridge would be rehabilitated to carry two lanes for northbound I-71 and three lanes for northbound local traffic.

Hybrid Alternative CD reconfigures I-75 through the I-71/I-75/US 50 Interchange and eliminates all direct access to and from I-75 from KY 12th Street to just south of Ezzard Charles Drive in the northbound direction. Hybrid Alternative CD also eliminates direct access to I-75 southbound between KY 9th Street and the Western Hills Viaduct. US 50 would be realigned to provide a parallel roadway and access to and from the interstate would be via the collector-distributor roadway.

In Ohio, the northbound collector-distributor roadway would carry local traffic from the existing bridge and provide access ramps to OH 2nd Street, US 50 westbound, and OH 5th Street before reconnecting to I-75 just south of Ezzard Charles Drive. The northbound ramps from OH 6th, 9th Streets and Freeman Avenue to $\mathrm{I}-75$ would be removed requiring traffic from these three points to utilize a new local roadway parallel to the northbound collector-distributor roadway for access to I-75 just before Ezzard Charles Drive. The southbound collector-distributor roadway would maintain access to I-71, downtown city streets as well as connecting to access ramps from OH $9^{\text {th }}$ Street and US 50 eastbound. The collector-distributor roadway would continue south over the new bridge into Covington. Downtown

Cincinnati traffic would cross over I-75 and run parallel between I-75 northbound and the northbound collector-distributor roadway. The three-lane collector-distributor roadway into Cincinnati would carry traffic to OH 7th Street, OH 2nd Street and I-71 northbound. Access to OH 5th Street would be removed.

Between Ezzard Charles Drive and the Western Hills Viaduct, northbound I-75 would have five lanes, southbound I-75 would have two lanes, and the local southbound collector-distributor roadway would have four lanes, for a total of 11 travel lanes. The northbound ramps from OH 6th and 9th streets to I-75 would be removed requiring traffic from these two points to utilize a new local roadway parallel to the northbound collector-distributor roadway for access to northbound I- 75. Ramps from Freeman Avenue, Winchell Avenue just north of Ezzard Charles Drive to the Interstate, and to Western Avenue would be eliminated.

Hybrid Alternative CD also improves Western and Winchell Avenues to facilitate traffic flow and increase capacity. The ramps to Western Avenue and from Winchell Avenue just north of Ezzard Charles Drive would be removed. The Western Hills Viaduct Interchange would be reconfigured to provide a full movement interchange.

See attached sketches in Section Three which show Alternatives C and D.

ALTERNATIVE E

Alternative E uses the existing I-71/I-75 alignment from the southern project limits at the Dixie Highway Interchange north to the Kyle's Lane Interchange. The Dixie Highway and Kyle's Lane interchanges would be modified slightly to accommodate a collector-distributor roadway, which would be constructed along both sides of I-71/I-75 between the two interchanges. North of the Kyle's Lane Interchange, the alignment shifts to the west to accommodate additional I-71/I-75 travel lanes. Between Kyle's Lane and KY 12th Street, six lanes would be provided in each direction for a total of 12 travel lanes. Near KY $12^{\text {th }}$ Street, the northbound alignment separates into two routes; one for interstate traffic and one for a local collector-distributor roadway. Near KY 9th Street, the interstate separates into I-71 and I-75 only routes.

In Alternative E, there are two access points into Covington for both northbound and southbound traffic. In the northbound direction, access would be provided by the local collector-distributor roadway at KY 12th Street and KY 5th Street. In the southbound direction, access would be provided by the local collector-distributor roadway at KY 5th Street, and off of I-71 and I-75 at KY 9th Street. Bullock Street would be extended north from Pike Street to KY 5th and KY $9^{\text {th }}$ streets. Jillian's Way would be extended north from Pike Street to KY 9th, 5th, and $4^{\text {th }}$ streets and allow for access to the existing Brent Spence Bridge.

Access to the interstate system from Covington would be provided by local city streets. In the northbound direction, access to I-75 would be provided at KY 9th Street, access to I-71 would be provided at KY 5th Street. Access to I-75 northbound would also be provided at KY 4th by the local collector-distributor roadway across the lower deck of the existing Brent Spence Bridge and through downtown Cincinnati before connecting just south of the Linn Street Bridge. In the southbound direction, access to I-75/I-71 would be provided at KY 5th Street and KY 12th Street.

A new double deck bridge would be built just west of the existing Brent Spence Bridge to carry northbound and southbound I-71 and I-75 traffic. On the upper deck, I-71 southbound would have
three lanes and I-71 northbound would have two lanes. On the lower deck, I-75 would have three northbound and three southbound lanes. The existing Brent Spence Bridge would be rehabilitated to carry northbound and southbound local traffic with two lanes in each direction.

In Ohio, Alternative E reconfigures I-75 through the I-71/I-75/US 50 Interchange and eliminates some of the existing access points along I-75. Existing ramps to I-71, US 50 and downtown Cincinnati would be reconfigured. The existing direct connections between I-75 to westbound and from eastbound US 50 would be maintained in Alternative E. US 50 would be reconfigured to eliminate left-hand entrances and exits. The OH 5th Street overpass would be eliminated and the Sixth Street Expressway would be reconfigured as a two-way, six-lane elevated roadway with a new signalized intersection for US 50 access and egress. Access between southbound I-71 (Fort Washington Way) and northbound I-75 would be provided near OH 9th Street as a direct connection. Both I-75 southbound and the local southbound collector-distributor roadway would have access to northbound I-71 (Fort Washington Way).

A local collector-distributor roadway would carry local traffic northbound from the existing Brent Spence Bridge and provide access to OH 2nd, 5th, and 9th streets, Winchell Avenue and access from OH 4th and 6th streets before reconnecting to I-75 just south of the Linn Street overpass. The northbound ramp from OH 9 th Street to $\mathrm{I}-75$ would be removed requiring traffic from this point to utilize a new local roadway parallel to I-75 and access the interstate at Bank Street. Southbound I-75 traffic would separate from the local collector-distributor roadway near Ezzard Charles Drive. The southbound collector-distributor roadway would carry traffic over I-75 to OH 7th Street, allowing traffic to either; access downtown at 7th Street, travel south to OH 5th and 2nd streets, or travel across the existing Brent Spence Bridge into Covington. Access to the local southbound collectordistributor roadway would be provided at Western Avenue and at OH 4 th and 8th streets.

Alternative E also improves Western and Winchell avenues to facilitate traffic flow and increase capacity. The ramps to Western Avenue and from Winchell Avenue just north of Ezzard Charles Drive would be removed. The northbound ramp from Freeman Avenue to I-75 would remain but the southbound ramp to Freeman would be eliminated. Between Ezzard Charles Drive and the Western Hills Viaduct, southbound I-75 would have six lanes; northbound I-75 would have five lanes, and one auxiliary lane to the Western Hills Viaduct. The Western Hills Viaduct Interchange would be reconfigured to provide a full movement interchange.

See attached sketches in Section Three which show Alternative E.

PROJECT SCHEDULE AND CONSTRUCTION COSTS

The following is the schedule for the Brent Spence Bridge Replacement/Rehabilitation Project, which follows construction of the Mill Creek Expressway and Thru the Valley projects.

- Completion of preliminary design and NEPA process - 2011
- Detailed design - 2011
- Right of way acquisition - 2012-2011
- Construction begins - 2015
- Midpoint of Construction - June 2017
- Completion of Construction - 2020

The total estimated project costs are construction costs which include a design contingency, a construction inflation factor, right-of-way for roadway and utility relocations, major utility, and total project development costs. The table below summarizes the total estimated project costs.

Total Cost Estimates for Mainline Alternatives in Projected Build Year Dollars

Alternative	Construction Costs (millions)	Construction Costs Inflation $(\mathbf{5 9 . 5 \%})$ (millions)	Real Estate Costs (millions)	Utility Costs (millions)	Real Estate Utility Costs (millions)	Project Development Costs	Estimated Costs (millions)
Hybrid Alternative CD	$\$ 1,261.7$	$\$ 750.7$	$\$ 18.0$	$\$ 39.4$	$\$ 1.0$	$\$ 210.4$	$\$ 2,281.2$
Alternative E	$\$ 1,431.6$	$\$ 851.8$	$\$ 15.4$	$\$ 39.4$	$\$ 1.0$	$\$ 236.3$	$\$ 2,575.5$

CONCERNS AND OBJECTIVES

Concerns

The following conceptual alternative issues were compiled based upon information provided during the design overview and the Conceptual Alternatives Evaluation Matrix found on pages 173-184 of the Conceptual Alternatives Study (CAS) prepared by Parsons Brinckerhoff, dated April 2009:

Hybrid Alternative CD

- Would not maintain all existing connections - would remove local connections to I-75 by using a collector-distributor system from KY $12^{\text {th }}$ Street to just south of Ezzard Charles Drive
- US 50 would remain geometrically deficient in several locations requiring a design exception
- Four acres of floodplain would be impacted by the proposed alignment
- Approximately two acres of Section 6(f) Parks (Goebel Park) would be impacted by the proposed alignment
- Five Section 4(f) resources would be impacted by the proposed alignment including Goebel Park, Lewisburg Historic District, Longworth Hall, Harriet Beecher Stowe Elementary School, and Queensgate Playground

Alternative E

- The proposed local collector-distributor roadway would be geometrically deficient in several locations requiring a design exception
- 35 businesses would be displaced in Ohio impacting up to 363 employees compared with approximately 30 businesses and 190 to 283 employees impacted by Hybrid Alternative CD

Both Alternatives (Hybrid Alternative $C D$ and Alternative E)

- I-71 would remain geometrically deficient requiring a design exception
- The proposed alignments would require relocation of a radio tower in Goebel Park in Covington, KY
- Three wetland areas totaling 0.59 acres would be impacted in Kentucky
- Eight woodlots with potential Indiana Bat habitat and two woodlots with marginal Indiana Bat Habitat have been identified which would have an impact on construction start dates in these areas
- Harriet Beecher Stowe Elementary School would have potential visual and noise impacts
- The eastern portion of Longworth Hall would be impacted by the proposed alignment
- Notre Dame Academy School tennis courts would be impacted in Kentucky
- The contractor would have limited space for access and logistics
- The proposed alignments would require impacts to a portion of the Duke Energy Sub-station near Longworth Hall
- The proposed alignments may impact the Willow Run Sewer structure during construction

Objectives

The VE team was tasked with the following objectives:

- Identify betterments to improve the quality and function of the facility
- Identify cost reduction ideas

To meet these objectives, the VE team focused on the key elements associated with the project, paying particular attention to the advantages and disadvantages between the Purpose and Need Elements, Engineering Elements, Section 4(f) and 6(f) Resources, and Business Property Acquisitions identified in the Conceptual Alternatives Evaluation Matrix (pages 173-184) of the Conceptual Alternatives Study (CAS) prepared by Parsons Brinckerhoff, dated April 2009.

Additionally, the VE team focused on the CAS recommendation (page 172) that the following beneficial design features of Alternative G be carried forward for further analysis and incorporated into the feasible alternatives CD and E :

- Access to north end of Clay Wade Bailey Bridge from I-75 southbound using a collectordistributor roadway and US 50 eastbound;
- Two access points into Covington;
- Access from a northbound collector-distributor roadway from KY to I-71 northbound in Ohio; and
- An access ramp just north of Ezzard Charles Drive for Freeman Avenue and local traffic to I75 northbound.

RESULTS OF THE STUDY

The VE team developed 11 VE alternatives and 10 design suggestions. The greatest opportunities for improved value centered on the rerouting of traffic to I-471 during construction; improving access to the central business districts and adjacent communities of both Covington, KY and Cincinnati, OH;
increasing the use of the existing Clay Wade Bailey Bridge; reducing impacts to 4(f) and 6(f) resources; and adjusting lane configurations to reduce the width of the new bridge by one lane per deck.

Rerouting of Traffic to I-471 during Construction

Three VE alternatives provide different lane configurations for adding a fourth lane on I-471 southbound that will support rerouting of traffic during construction of either Hybrid Alternative CD or Alternative E. The alternatives include replacement of the existing outside shoulder with a full depth pavement lane which could be used for future expansion of I-471 to four-lanes (Alt. No. MOT-1A), and two options (Alt. Nos. MOT-1B or MOT-1C) that would provide a temporary fourth lane by using the existing inside shoulder which would be adequate for carrying traffic in its existing condition.

Improve Access to Central Business Districts and Adjacent Communities

In Hybrid Alternative CD, three VE alternatives are recommended to improve access to central business districts and adjacent communities. Providing a shorter route for emergency response from the Fire Station at 5th Street and Central Avenue to the Fort Washington Way Trench similar to Alternative E would shorten the response distance by nearly one mile (Alt. No. P-7). Providing a direct connection from the southbound collector-distributor to 2nd Street in Ohio and adding an additional connection to the US $42 / 3$ rd Street Intersection would increase the use of the Clay Wade Bailey Bridge by local traffic. This alternative would improve local access to Covington, KY from Ohio (Alt. No. P-8). Adding a drop lane from the collector-distributor and merging this with the frontage road between 9th Street and Linn Street would provide a more direct access to the Museum Center and Amtrak railroad from Kentucky and Fort Washington Way (Alt. No. S-1).

In Alternative E, replacing the 5th Street northbound ramp to I-71 in Kentucky with an indirect ramp connection from the collector-distributor roadway to I-71 in Ohio would improve access from KY 12th, Pike, 9th, 5th, and 4th Streets to I-71 northbound (Alt. No. P-3).

Reduce Impacts to $4(f)$ and $\sigma(f)$ Resources

In all options, significant construction and right-of-way cost avoidances may be realized by widening one-half mile of I-71/I-75 on the east side from 2,000 feet south of KY 12th St. to 4,500 feet south of KY 12th St. This would possibly eliminate the need for excavation and/or a proposed retaining wall on the west side of I-71/I-75 in Kentucky in the "Cut in the Hill" Section (Alt. No. R-1). Additionally, the use of tie-back retaining walls in selected areas from Kyle's Lane to approximately 7,000 feet north of Kyle's Lane and other applicable areas on the west side of I-75 southbound in Kentucky would reduce right-of-way acquisition requirements.

Reduce the Width of the New Bridge by One Lane

Since the proposed new bridge design for Hybrid Alternative CD calls for 10 travel lanes between the two 6-lane decks, adjusting the lane configurations on each deck would save one lane per deck and reduce the overall bridge width by 12 ft . (Alt. No. S-6A).

Since the proposed new bridge design for Alternative E calls for 11 travel lanes between the two 6-lane decks, adjusting the lane configurations on each deck and eliminating the third lane for I-71 southbound would save one lane per deck and reduce the overall bridge width by 12 ft . (Alt. No. S-6B).

IMPLEMENTATION

This VE report is a formalization of the draft materials provided to the project team during the outbriefing discussion which occurred on August 26, 2009. The project team should conduct a formal implementation meeting in which the alternatives and design suggestions are considered and their disposition established in an implementation report. To that end, the Summary of VE Alternatives table should help record the results. An electronic copy of this table is being provided for your convenience.

SUMMARY OF VALUE ENGINEERING ALTERNATIVES

PROJECT:	ODOT HAM-71/75-0.00/0.22, PID 75119, KYTC Project Item No. 6-17					
		PRESENT WORTH OF COST SAVINGS				
$\begin{aligned} & \text { ALT. } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { ORICINAL } \\ & \text { COST } \end{aligned}$	ALTERNATIVE COST	INITIAL COST SAVINGS	RECURRING COST SAVINGS	TOTAL PW lCC SAVINGS
	MAINTENANCE OF TRAFFIC (MOT)					
MOT-1A	For all options in Kentucky, replace the outside shoulders on I-471 southbound with full depth pavement to support rerouting of traffic during construction.	\$0	\$2,868,946	$(\$ 2,868,946)$		(\$2,868,946)
MOT-1B	For all options in Kentucky, use the inside shoulders on I-471 southbound with $12-\mathrm{ft}$.-wide travel lanes and no inside shoulder to support rerouting of traffic during construction.	\$0	\$843,260	$(\$ 843,260)$		(\$843,260)
MOT-1C	For all options in Kentucky, use the inside shoulders on I-471 southbound with 11.5 - ft .-wide travel lanes and a 2 - ft .-wide inside shoulder to support rerouting of traffic during construction.	\$0	\$920,106	$(\$ 920,106)$		$(\$ 920,106)$
MOT-2	For all options in Ohio, add alternative Newport Exit Signing from I-71 via US27 to reroute traffic during construction.	DESIGN SUGGESTION				
MOT-4A	For all options, use Ohio Option 1 as a contractor laydown area for use during construction of the main river crossing.	\$0	\$3,100,000	(\$3,100,000)		(\$3,100,000)
MOT-4B	For all options, use Ohio Option 2 as a contractor laydown area for use during construction of the main river crossing.	\$0	\$789,500	$(\$ 789,500)$		$(\$ 789,500)$
MOT-4C	For all options, use Kentucky Option 1 as a contractor lay-down area for use during construction of the main river crossing.	DESIGN SUGGESTION				

SUMMARY OF VALUE ENGINEERING ALTERNATIVES

PROJEC	ODOT HAM-71/75-0.00/0.22, PID 75119, KYTC Project Item No. 6-17					
			PRESENT	RTH OF COST	VINGS	
$\begin{aligned} & \text { ALT. } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	ORIGINAL COST	AlTERNATIVE COST	Initial Cost SAVINGS	RECURRING COST SAVINGS	TOTAL PW lCC SAVINGS
	ROADWAY (R)					
R-1	For all options, realign Section 1 near the cut in the hill to the east to reduce right-of-way and excavation requirements.		DE	N SUGGESTI		
R-2	Specify that recycled concrete pavement is acceptable for use as sub-grade stabilization in Kentucky.		DES	N SUGGESTI		

SUMMARY OF VALUE ENGINEERING ALTERNATIVES

PROJECT:	ODOT HAM-71/75-0.00/0.22, PID 75119, KYTC Project Item No. 6-17					
	PRESENT WORTH OF COST SAVINGS					
ALT. NO.	DESCRIPTION	$\begin{gathered} \text { ORIGINAL } \\ \text { COST } \end{gathered}$	ALTERNATIVE COST	INITIAL COST SAVINGS	RECURRING COST SAVINGS	TOTAL PW LCC SAVINGS
	PAVEMENT/RAMPS (P)					
P-3	In Alternative E, replace the 5th Street northbound ramp to I-71 in Kentucky with an indirect ramp connection from the collector-distributor roadway to I71 in Ohio.	\$398,710	\$863,892	$(\$ 465,182)$		$(\$ 465,182)$
P-5	Eliminate the KY 9th Street intersection with the collector-distributor roadway from all options.	DESIGN SUGGESTION				
P-7	For the Hybrid Alternative CD, identify a shorter route for emergency responses from the Fire Station at 5th Street and Central Avenue to the Fort Washington Way Trench.	DESIGN SUGGESTION				
P-8	For the Hybrid Alternative CD, provide a direct connection from southbound collector-distributor roadway to 2nd Street in Ohio and add an additional connection to the US 42/3rd Street intersection to improve access and increase the use of the Clay Wade Bailey Bridge.	\$0	\$1,437,344	(\$1,437,344)		(\$1,437,344)
P-10	For the Hybrid Alternative CD, provide access from Winchell Avenue just north of Ezzard Charles Drive to northbound I-75.	\$0	\$999,433	$(\$ 999,433)$		$(\$ 999,433)$
P-11	For the Hybrid Alternative CD, update the cost estimate to reflect the additional lane on the I-75 mainline.	DESIGN SUGGESTION				
P-13	For Alternative E, shift the collector-distributor roadway to minimize impacts to Goebel Park and avoid relocating the radio station tower.	DESIGN SUGGESTION				

SUMMARY OF VALUE ENGINEERING ALTERNATIVES

PROJECT:	ODOT HAM-71/75-0.00/0.22, PID 75119, KYTC Project Item No. 6-17					
	PRESENT WORTH Of COST SAVINGS					
$\begin{aligned} & \text { ALT. } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	ORIGINAL COST	ALTERNATIVE COST	INITIAL COST SAVINGS	RECURRING COST SAVINGS	TOTALPW LCC SAVINGS
	STRUCTURES (S)					
S-1	For Hybrid Alternative CD, provide an exit from the northbound collector-distributor roadway to Ezzard Charles Drive similar to that shown in the Alternative E design.	DESIGN SUGGESTION				
S-2	With all options, use tie-back walls on the west side of southbound KY I-75 and in other applicable areas in Kentucky to reduce excavation and right-of-way requirements.	DESIGN SUGGESTION				
S-4	With all options, provide a means to mitigate potential structural impacts to Willow Run Sewer during construction.	DESIGN SUGGESTION				
S-6A	For the Hybrid Alternative CD, adjust the lane configurations on each deck on the new bridge to save one lane per deck.	\$567,401,472	\$513,809,472	\$53,592,000		\$53,592,000
S-6B	For Alternative E, make the traffic operations directional on each deck on the new bridge to save one lane per deck.	\$567,401,472	\$513,809,472	\$53,592,000		\$53,592,000

STUDY RESULTS

INTRODUCTION

The results of this value engineering study conducted on the Brent Spence Bridge Replacement/ Rehabilitation Project portray the benefits that can be realized by KYTC, ODOT, the Ohio-KentuckyIndiana Regional Council of Governments, and the cities of Covington, Kentucky, and Cincinnati, Ohio. During the course of the study, many ideas for potential value enhancement were conceived and evaluated by the team for technical feasibility, applicability to the project, and the ability to meet the owner's project value objectives. Research performed on those ideas considered to have potential to enhance the value of the project resulted in the development of individual alternatives identifying specific changes to the project as a whole, or individual elements that comprise the project. These may be in the form of VE alternatives (accompanied by cost estimates) or design suggestions (without cost estimates). For each alternative developed the following information has been provided:

- A summary of the original design;
- A description of the proposed change to the project;
- Sketches and design calculations, if appropriate;
- A capital cost comparison and life cycle discounted present worth cost comparison of the alternative and original design, if appropriate;
- A descriptive evaluation of the advantages and disadvantages of selecting the alternative; and
- A brief narrative to compare the original design and the proposed change and provide a rationale for implementing the change into the project.

A composite markup of 59.5%, as described in Section Four of the report, was used to generate the cost for the construction items being compared.

Each design suggestion contains the same information as the VE alternatives, except that no cost information is included. Design suggestions are presented to bring attention to areas of the design that, in the opinion of the VE team, should be changed or included for reasons other than cost. Examples of these reasons may include improved traffic flow, ease of maintenance, ease of construction, safer working conditions, and reduced project risk. In addition, some ideas cannot be quantified in terms of cost with the design information provided; these are also presented as design suggestions and are intended to improve the quality of the project.

Each alternative or design suggestion developed is identified with an alternative number (Alt. No.) that can be tracked through the value analysis process and facilitate referencing between the Creative Idea Listing and Evaluation worksheets, the alternatives, and the Summary of Value Engineering Alternatives table. The Alt. No. includes a prefix that refers to one of the following major project elements:

PROJECT ELEMENT	PREFIX
Maintenance of Traffic	MOT
Roadway	R
Pavement	P
Structures	S

Summaries of the alternatives are provided on the Summary of Value Engineering Alternatives tables. The tables are divided into project elements for the reviewer's convenience and are used to divide the results section. The complete documentation of the developed alternatives and design suggestions follows the Summary of Value Engineering Alternatives tables.

KEY ISSUES

Two alternatives, including a Hybrid Alternative CD and Alternative E were selected as feasible alternatives for further development as part of the ODOT Project Development Process (PDP) for Major Projects, PDP Step 6. The following conceptual alternative issues were compiled based upon information provided during the design overview and the Conceptual Alternatives Evaluation Matrix found on pages 173-184 of the Conceptual Alternatives Study (CAS) prepared by Parsons Brinckerhoff, dated April 2009:

Hybrid Alternative $C D$

- Would not maintain all existing connections - would remove local connections to I-75 by using a collector-distributor system from KY $12^{\text {th }}$ Street to just south of Ezzard Charles Drive
- US 50 would remain geometrically deficient in several locations requiring a design exception
- Four acres of floodplain would be impacted by the proposed alignment
- Approximately two acres of Section 6(f) Parks (Goebel Park) would be impacted by the proposed alignment
- Five Section 4(f) resources would be impacted by the proposed alignment including Goebel Park, Lewisburg Historic District, Longworth Hall, Harriet Beecher Stowe Elementary School, and Queensgate Playground

Alternative E

- The proposed local collector-distributor roadway would be geometrically deficient in several locations requiring a design exception
- 35 businesses would be displaced in Ohio impacting up to 363 employees compared with approximately 30 businesses and 190-283 employees impacted by Hybrid Alternative CD

Both Alternatives (Hybrid Alternative CD and Alternative E)

- I-71 would remain geometrically deficient requiring a design exception
- The proposed alignments would require relocation of a radio tower in Goebel Park in Covington, KY
- Three wetland areas totaling 0.59 acres would be impacted in Kentucky
- Eight woodlots with potential Indiana Bat habitat and two woodlots with marginal Indiana Bat Habitat have been identified which would have an impact on construction start dates in these areas
- Harriet Beecher Stowe Elementary School would have potential visual and noise impacts
- The eastern portion of Longworth Hall would be impacted by the proposed alignment
- Notre Dame Academy School tennis courts would be impacted in Kentucky
- The contractor would have limited space for access and logistics
- The proposed alignments would require impacts to a portion of the Duke Energy Sub-station near Longworth Hall
- The proposed alignments may impact the Willow Run Sewer structure during construction

STUDY OBJECTIVES

The VE team was tasked with the following objectives:

- Identify betterments to improve the quality and function of the facility
- Identify cost reduction ideas

To meet these objectives, the VE team focused on the key elements of the project, paying particular attention to the advantages and disadvantages between the Purpose and Need Elements, Engineering Elements, Section 4(f) and 6(f) Resources, and Business Property Acquisitions identified in the Conceptual Alternatives Evaluation Matrix (pages 173-184) of the CAS.

Additionally, the VE team focused on the CAS recommendation (page 172) that the following beneficial design features of Alternative G be carried forward for further analysis and incorporated into the feasible alternatives $C D$ and E :

- Access to the north end of Clay Wade Bailey Bridge from I-75 southbound using a collectordistributor roadway and US 50 eastbound;
- Two access points into Covington;
- Access from a northbound collector-distributor from KY to I-71 northbound in Ohio; and
- An access ramp just north of Ezzard Charles Drive for Freeman Avenue and local traffic to I-75 northbound.

RESULTS OF THE STUDY

Research of the ideas identified as having potential for enhancing the value of the project resulted in the development of 11 VE alternatives and 10 design suggestions for consideration by the project team. The greatest opportunities for improved value centered on the rerouting of traffic to I-471 during construction; improving access to central business districts and adjacent communities of both Covington, KY and Cincinnati, OH; increasing the use of the existing Clay Wade Bailey Bridge; reducing impacts to $4(\mathrm{f})$ and $6(f)$ resources; and adjusting lane configurations to reduce the width of the new bridge by one lane per deck.

Rerouting of Traffic to I-471 during Construction

Three VE alternatives provide different lane configurations for adding a fourth lane on I-471 southbound that would support rerouting of traffic during construction of either Hybrid Alternative CD or Alternative E. The alternatives include replacement of the existing outside shoulder with a full depth pavement lane
which could be used for future expansion of I-471 to four-lanes (Alt. No. MOT-1A), and two options (Alt. Nos. MOT-1B or MOT-1C) that would provide a temporary fourth lane by using the existing inside shoulder which would be adequate for carrying traffic in its existing condition.

Improve Access to Central Business Districts and Adjacent Communities

In the Hybrid Alternative CD, three VE alternatives are recommended to improve access to central business districts and adjacent communities. Providing a shorter route for emergency response from the Fire Station at 5th Street and Central Avenue to the Fort Washington Way Trench similar to Alternative E would shorten the response distance by nearly one mile (Alt. No. P-7). Providing a direct connection from the southbound collector-distributor to 2nd Street in Ohio and adding an additional connection to the US $42 / 3$ rd Street Intersection would increase the use of the Clay Wade Bailey Bridge by local traffic. This alternative would improve local access to Covington, KY from Ohio (Alt. No. P-8). Adding a drop lane from the collector-distributor and merging this with the frontage road between 9th Street and Linn Street would provide a more direct access to the Museum Center and Amtrak railroad from Kentucky and Fort Washington Way (Alt. No. S-1).

In Alternative E, replacing the 5th Street northbound ramp to I-71 in Kentucky with an indirect ramp connection from the collector-distributor roadway to I-71 in Ohio would improve access from KY 12th, Pike, 9th, 5th, and 4th Streets to I-71 northbound (Alt. No. P-3).

Reduce Impacts to $4(f)$ and $6(f)$ Resources

In all options, significant construction and right-of-way cost avoidance may be realized by widening onehalf mile of I-71/I-75 on the east side from $2,000 \mathrm{ft}$. south of KY 12th St. to $4,500 \mathrm{ft}$. south of KY 12th Street. This would possibly eliminate the need for excavation and/or a proposed retaining wall on the west side of I-71/I-75 in Kentucky in the "Cut in the Hill" Section (Alt. No. R-1). Additionally, the use of tieback retaining walls in selected areas from Kyle's Lane to approximately 7,000 feet north of Kyle's lane and other applicable areas on the west side of I-75 southbound in Kentucky would reduce right-of-way acquisition requirements.

Reduce the Width of the New Bridge by One Lane

Since the proposed new bridge design for Hybrid Alternative CD calls for 10 travel lanes between the two 6-lane decks, adjusting the lane configurations on each deck would save one lane per deck and reduce the overall bridge width by 12 ft . (Alt. No. S-6A).

Since the proposed new bridge design for Alternative E calls for 11 travel lanes between the two 6-lane decks, adjusting the lane configurations on each deck and eliminating the third lane for $\mathrm{I}-71$ southbound would save one lane per deck and reduce the overall bridge width by 12 ft . (Alt. No. S-6B).

Summary

Each of the aforementioned alternatives should be given careful consideration for the potential cost savings and/or schedule improvement that they offer compared to the tradeoffs which may include additional rerouting of traffic during construction.

EVALUATION OF ALTERNATIVES AND DESIGN SUGGESTIONS

When reviewing the study results, the project team should consider each part of an alternative or design suggestion on its own merit. There may be a tendency to disregard an alternative because of a concern about one part of it. Each area within an alternative or design suggestion that is acceptable should be considered for use in the final design, even if the entire alternative or design suggestion is not implemented. Variations of these alternatives and design suggestions by the owner or designer are encouraged.

All alternatives and design suggestions were developed independently of each other to provide a broad range of options to consider for implementation. Therefore, some of them are "mutually exclusive," so acceptance of one may preclude the acceptance of another. In addition, some of the alternatives may be interrelated, so acceptance of one or more may not yield the total of the cost savings shown for each alternative. Design suggestions could also be interrelated thus precluding a part of one or more suggestions from being implemented if another design suggestion is also implemented.

The project team should evaluate all alternatives carefully in order to select the combination of ideas with the greatest beneficial impact on the project. Once this has been accomplished, the total cost savings resulting from the VE study can be calculated based on implementing a revised, all-inclusive design solution.

SUMMARY OF VALUE ENGINEERING ALTERNATIVES

PROJECT:	ODOT HAM-71/75-0.00/0.22, PID 75119, KYTC Project Item No. 6-17					
$\begin{aligned} & \text { ALT. } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	original COST	ALTERNATIVE COST	inital cost SAVINGS	RECURRING cost Savings	TOTAL PW LCC SAVINGS
	MAINTENANCE OF TRAFFIC (MOT)					
MOT-1A	For all options in Kentucky, replace the outside shoulders on I-471 southbound with full depth pavement to support rerouting of traffic during construction.	\$0	$\$ 2,868,946$	$(\$ 2,868,946)$		$(\$ 2,868,946)$
MOT-1B	For all options in Kentucky, use the inside shoulders on 1-471 southbound with 12-ft.-wide travel lanes and no inside shoulder to support rerouting of traffic during construction.	so	\$843,260	$(\$ 843,260)$		(\$843,260)
MOT-1C	For all options in Kentucky, use the inside shoulders on 1-471 southbound with 11.5 - ft -wide travel lanes and a $2-\mathrm{ft}$.-wide inside shoulder to support rerouting of traffic during construction.	\$0	$\$ 920,106$	$(\$ 920,106)$		(\$920,106)
MOT-2	For all options in Ohio, add alternative Newport Exit Signing from 1-71 via US27 to reroute traffic during construction.	DESIGN SUGGESTION				
MOT-4A	For all options, use Ohio Option 1 as a contractor laydown area for use during construction of the main river crossing.	\$0	$\$ 3,100,000$	$(\$ 3,100,000)$		(\$3,100,000)
MOT-4B	For all options, use Ohio Option 2 as a contractor laydown area for use during construction of the main river crossing.	so	$\$ 789,500$	(\$789,500)		$(\$ 789,500)$
MOT-4C	For all options, use Kentucky Option 1 as a contractor lay-down area for use during construction: of the main river crossing.	Design suggestion				

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
DESCRIPTION: FOR ALL OPTIONS IN KENTUCKY, REPLACE THE OUTSIDE SHOULDER ON I-471 SOUTHBOUND WITH FULL DEPTH PAVEMENT TO SUPPORT REROUTING OF TRAFFIC DURING CONSTRUCTION

ORIGINAL DESIGN:
The original design includes the rerouting of traffic to I-471 southbound during construction with no mention of replacing the existing outside shoulders with full-depth pavement.

ALTERNATIVE:

Replace the outside shoulders on I-471 Southbound with full-depth pavement to support rerouting of traffic during construction.

ADVANTAGES:

- Prevents shoulder failure during construction thereby preventing significant traffic delays
- Provides full-depth shoulders for any future
construction requirements or detours

DISADVANTAGES:

- Added pavement adds cost to the current project for temporary lanes during construction

DISCUSSION:

I-471 crosses over the river running south into I-275 and then to I-75. I-275 has extra capacity available. Only I-471 needs shoulder work. Ramp work will be required at I-71/I-471, I-471/I-275, and I-275/I-75 in Kentucky.

Replacement of the outside shoulders on I-471 Southbound with full-depth pavement will prevent the failure of shoulders during construction as well as provide additional capacity for future construction requirements or detours.

COST SUMMARY			PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN	$\$$	0		$\mathbf{\$}$
INITIAL COST				

TICAL SECTIONS
L
Looking South

Alt. No. Mot-1a sheet No. Lows

Mot-M
Outside Shoulder
ALternative design

CALCULATIONS

PROJECT: HAM-71/75-0.00/.022, PID 75119
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
ALT. NO.:
MOT-1A
Kentucky Transportation Cabinet
SHEET NO.: 3 of 5

Use of outside shoulder on I-471 for travel lane
Use 10 ft . outside shoulder on southbound I-471 for an $11 \frac{1}{2} \mathrm{ft}$. travel lane, and reduce the other three southbound travel lanes from 12 ft . down to $11 \frac{1}{2} \mathrm{ft}$. This leaves no room for a shoulder on the outside.

- Cost to remove outside shoulders. These shoulders are not full depth and would have to be removed.
- Cost to replace full depth outside shoulders
- Remove white edge line and two lines of skips
- Place three skip lines, edge lines and three lines of pavement markers

Pavement Removal of Full Depth Pavement Replacement

$$
\begin{aligned}
5 \text { miles } \times 528 \mathrm{eft} / \text { mile } \times 10 \mathrm{ft} & =264,000 \mathrm{sf} \times\left(\frac{\mathrm{sy}}{9 \mathrm{st}}\right) \\
\text { width } & =29,333 \mathrm{sy}
\end{aligned}
$$

Edge Lines (Remove $力$ Replace)
5 miles $\times 5280 \mathrm{ft} / \mathrm{mil} l_{\mathrm{e}}=26,400 \mathrm{ft}$.
Skip Lines (Remove b Peplos)

$$
26,400 \mathrm{ft} \times 25 \% \times 3 \text { lines }=19,800 \mathrm{ft}
$$

Pavement Markers (Remove o Replace)

$$
26,400 \mathrm{ft} \times \mathrm{X} \text { | per } 80 \mathrm{ft} \times 3 \text { lines }=990 \text { workers }
$$

PROJECT:	HAM-71/75-0.00/0.22, PID 75119	Alternative No.:	
	Ohio Department of Transportation	MOT-1B	
	PROJECT ITEM NO. 6-17 Kentucky Transportation Cabinet		
DESCRIPTION:	FOR ALL OPTIONS IN KENTUCKY, USE THE INSIDE SHOULDER ON I-471 SOUTHBOUND TO SUPPORT REROUTING OF TRAFFIC DURING CONSTRUCTION	SHEET NO.:	1 of 5

ORIGINAL DESIGN:
The original design includes the rerouting of traffic to I-471 southbound during construction.

ALTERNATIVE:

Use the inside shoulder in lieu of the outside shoulder on I-471 southbound to support rerouting of traffic during construction.

ADVANTAGES:

- No full-depth pavement replacement required
- Maintains 12 -ft.-wide lanes during construction

DISCUSSION:

I-471 crosses over the river running south into I-275 and then to I-75. I-275 has extra capacity. Only I-471 needs shoulder work. Ramp work will be required at I-71/I-471, I-471/I-275, and I-275/I-75 in Kentucky.

Therefore, use an inside shoulder/lane shift as a detour during construction to prevent full-depth pavement replacement.

COST SUMMARY	INITIAL COST		PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST	
ORIGINAL DESIGN	\$	0		\$	0
ALTERNATIVE	\$	863,260		\$	863,260
SAVINGS (Original minus Alternative)	\$	$(863,260)$		\$	$(863,260)$

1

$$
\begin{gathered}
S+0 e \\
\ldots n v-L
\end{gathered}
$$

$=2$

PROJECT: HAM-71/75-0.00/.022, PID 75119
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
ALT. NO.:
MOT-1B SHEET NO:: 3 of 5

Use of inside shoulder on I-471 for travel lane
Use 12 ft . inside shoulder on southbound I-471 for a 12 ft . travel lane. This option provides no shoulder for this lane.

- Cost to remove rumble strips
- Remove yellow edge line
- Paint a skip line, edge line and place one line of pavement markers

Rumble Strip (Remove Path)

$$
\begin{aligned}
5 m \text { miles } & * 52806 \% \text { min } * / 454+* 245 \% / \mathrm{mmbk} \\
& -1408056
\end{aligned}
$$

Edge Line (Remove \& Replace)

$$
5 \text { miles } k 52204 / m \| c=26,400 \mathrm{LF}
$$

Skip tine LRepleed

$$
5 \mathrm{mles} * 52804 / \mathrm{mle} * 25 \%=6600 \mathrm{LF}
$$

Pavement Marker (Remove tReplace)

$$
5 \text { miles } 45280 \mathrm{ft} / \mathrm{mile} * \text { /oof }=330 \text { Markers }
$$

COST WORKSHEET


```
PROJECT: HAM-71/75-0.00/0.22, PID }7511
    Ohio Department of Transportation
    PROJECT ITEM NO. 6-17
    Kentucky Transportation Cabinet
DESCRIPTION: FOR ALL OPTIONS IN KENTUCKY, USE THE INSIDE
SHOULDER ON I-471 SOUTHBOUND TO SUPPORT
    REROUTING OF TRAFFIC DURING CONSTRUCTION
    WITH 11.5-FT.-WIDE TRAVEL LANES AND A 2-FT.-WIDE
    INSIDE SHOULDER
```

ORIGINAL DESIGN: (See attached sketch)
The original design includes the rerouting of traffic to I-471 southbound during construction.

ALTERNATIVE: (See attached sketch)
Use the inside shoulder in lieu of the outside shoulder on I-471 southbound to support rerouting of traffic during construction. Use 11.5 -ft.-wide lanes during construction.

ADVANTAGES:

- No full-depth pavement replacement required
- Maintains a 2-ft.-wide inside shoulder

DISADVANTAGES:

- Narrower travel lanes are necessary to accommodate the 2 -ft.-wide inside shoulder

DISCUSSION:

I-471 crosses over the river running south into I-275 then to I-75. I-275 can carry extra capacity. Only I-471 needs shoulder work. Ramp work will be required at I-471/I-71, I-471/I-275, and I-275/I-75 in Kentucky.

Therefore, use an inside shoulder/lane shift as a detour during construction to prevent full-depth pavement replacement.

COST SUMMARY	INITIAL COST		PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST	
ORIGINAL DESIGN	\$	0	-	\$	0
ALTERNATIVE	\$	920,106	-	\$	920,106
SAVINGS (Original minus Alternative)	\$	$(920,106)$	-	\$	$(920,106)$

PROJECT: HAM-71/75-0.00/.022, PID 75119
ALT. NO.:
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet

MOT-1C

SHEET NO.: 3 of 5

Use of inside shoulder on I-471 for travel lane with narrower lane
Use 12 ft . inside shoulder on southbound $\mathrm{I}-471$ for an $11 / 1 / \mathrm{ft}$. travel lane and reduce the other three southbound travel lanes from 12 ft . to $111 / 2 \mathrm{ft}$. This leaves 2 ft . for a shoulder on the inside.

- Cost to remove rumble strips
- Remove yellow edge line and two lines of skips
- Paint three skip lines, edge lines, and place three lines of pavement markers

Rumble Strip (Remavel: itching)

$$
\begin{aligned}
& 5 \text { miles } * 5280 \mathrm{ft} \text { mile } * 1 / 45 \mathrm{ft} * 245 \% \mathrm{fmbt} \\
& =14,08054
\end{aligned}
$$

Edge Line (Remove sc Replace)

$$
5 \text { miles } * 5280 \mathrm{ft} / \text { mile }=26,400 \mathrm{LF}
$$

Skip line (Remove $\frac{3}{3}$ Replace)
$5 \mathrm{mHes} * 5280 \mathrm{Atmle} * 25 \% * 3$ Line $=19,900 \mathrm{LF}$
Pavement Marker \&Remove Replace

$$
\text { S mics *5280 white * 1/8oft } * 3 \text { Lines }=990 \text { markers }
$$

COST WORKSHEET


```
PROJECT: HAM-71/75-0.00/0.22, PID 75119
    Ohio Department of Transportation
    PROJECT ITEM NO. 6-17
    Kentucky Transportation Cabinet
DESCRIPTION: FOR ALL OPTIONS IN OHIO, ADD ALTERNATIVE
NEWPORT EXIT SIGNING FROM I-71 VIA US 27 TO
REROUTE TRAFFIC DURING CONSTRUCTION
```

ALTERNATIVE NO.:
MOT-2

SHEET NO:
1 of 2

ORIGINAL DESIGN:
The original design includes a proposed Maintenance of Traffic (MOT) Scheme for all alternatives which removes 1-71 southbound (SB) traffic (with the potential of also removing 1-71 northbound traffic) from downtown Covington/Cincinnati Brent Spence Bridge via a detour using I-471 and I-275 in Northern Kentucky. The proposed detour will require upgrades to I-471 and I-275 to accommodate the increased traffic.

ALTERNATIVE: (See attached sketch)

Provide alternative signing on I-71 SB in Ohio for traffic bound for Newport, KY and the Newport Entertainment District (NED) to use the Third Street exit in Downtown Cincinnati and access Newport via the Taylor Southgate Bridge (US 27). If I-71 northbound traffic is maintained along the existing corridor, Newport bound traffic on I-71 northbound and I-71 southbound could be signed to use the Second Street Exit as well.

ADVANTAGES:

- Reduces congestion on the I-471/I-71 southbound combined MOT route and I471/KY 8 interchange by removing Newport bound traffic, especially during peak hour and event traffic scenarios
- Uses available capacity on Taylor Southgate Bridge
- Alternative signing could remain as a permanent installation for I-71 southbound

DISADVANTAGES:

- Additional Newport bound traffic using the Third Street exit in downtown Cincinnati may cause operational issues and increased congestion on the downtown street network
- The alternative Newport/NED signing idea was not very well received by the City of Cincinnati during prior meetings regarding the $I-471 / \mathrm{KY} 8$ interchange

DISCUSSION:

The low cost of providing additional signing could have a dramatic impact to traffic flow and safety to the combined I-471/I-71 southbound MOT route by removing Newport bound traffic. This is especially true when considering the backups/congestion at the I-471/KY 8 interchange during peak hour and event traffic scenarios. Additionally, l-71 southbound signing could remain as a permanent installation.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN			
ALTERNATIVE	DESIGN SUGGESTION		
SAVINGS (Original minus Alternative)			

PROJECT:	HAM-71/75-0.00/0.22, PID 75119 Ohio Department of Transportation PROJECT ITEM NO. 6-17	ALTERNATVE NO.:
	Kentucky Transportation Cabinet	

ORIGINAL DESIGN:

The original designs make no mention of contractor lay-down areas for the bridge construction.

ALTERNATIVE: (See attached sketch)

Use Ohio Option 1 and designate the hilltop between I-71/75/Mehring Way and the railroad to the east as a potential contractor lay-down area. The contractor would use Mehring Way to access the site.

ADVANTAGES:

- Provides a laydown area near the construction site
- Provides a large area
- Provides a potential green space at completion of project

DISADVANTAGES:

- Requires right-of-way acquisition
- May interfere with traffic along Mehring Way when materials are being moved
- May have to use numerous surface streets to access the lay-down area

DISCUSSION:

The contractor will need a lay-down area when constructing the new $1-71 / 75$ bridge over the Ohio River. The hilltop between I-71/I-75/Mehring Way and the railroad was identified as an area close to the site having minimal impact to traffic. This area also has the potential of being reclaimed as green space at the completion of the project.

COST SUMMARY			PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN	$\$$	0	-	$\$$
ALTERNATIVE	$\$$	$\mathbf{3 , 1 0 0 , 0 0 0}$	-	0
SAVINGS (Original minus Alternative)	$\$$	$(\mathbf{3 , 1 0 0 , 0 0 0)}$	-	$\mathbf{3 , 1 0 0 , 0 0 0}$

COST WORKSHEET

VALUE ENGINEERING ALTERNATIVE

```
PROJECT: HAM-71/75-0.00/0.22, PID 75119
    Ohio Department of Transportation
    PROJECT ITEM NO. 6-17
    Kentucky Transportation Cabinet
DESCRIPTION: FOR ALL OPTIONS, USE OHIO OPTION 2 AS A
CONTRACTOR LAY-DOWN AREA FOR USE DURING
CONSTRUCTION OF THE MAIN RIVER CROSSING
```


CONSTRUCTION OF THE MAIN RIVER CROSSING

ORIGINAL DESIGN:
The original designs make no mention of contractor lay-down areas for the bridge construction.

ALTERNATIVE:

Use Ohio Option 2 and designate the east quadrant of the Duke Energy parking lot as a contractor lay-down area. The existing lot is accessible from Mehring Way.

ADVANTAGES:

- Less expensive right-of-way cost
- The new parking area can remain undisturbed
- Near the construction site
- Minimal surface streets to use to access the lay-down area

DISADVANTAGES:

- Requires temporary right-of-way acquisition
- Area to the west of the Duke Energy Substation would require pavement and fencing
- Smaller than other areas proposed

DISCUSSION:

The contractor will need a lay-down area when constructing the new I-71/I-75 bridge over the Ohio River. The east quadrant of the Duke Energy parking lot is smaller than other areas but will have a lower right-of-way cost and will only be needed during construction. Access to the work site is optimal.

If this site is selected, consideration should be given to closing Mehring Way during bridge construction.

COST SUMMARY	INITIAL COST		PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST	
ORIGINAL DESIGN	\$	0	\$	\$	0
ALTERNATIVE	\$	789,500	\$	\$	789,500
SAVINGS (Original minus Alternative)	\$	$(789,500)$	\$	\$	$(789,500)$

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
DESCRIPTION: FOR ALL OPTIONS, USE KENTUCKY OPTION 1 AS A CONTRACTOR LAY-DOWN AREA FOR USE DURING CONSTRUCTION OF THE MAIN RIVER CROSSING

MOT-4C

SHEET NO.: $\mathbf{1}$ of $\mathbf{2}$

ORIGINAL DESIGN:

The original designs make no mention of contractor lay-down areas for the bridge construction.

ALTERNATIVE:

Designate the area bordered by Crescent Avenue to the west, $3^{\text {rd }}$ Street to the north, I-75 to the east, and $4^{\text {th }}$ Street to the south in Kentucky as a contractor lay-down area.

ADVANTAGES:

- Uses existing right-of-way
- Close to the construction site
- Good access to the lay-down area from the interstate

DISCUSSION:
The contractor will need a lay-down area when constructing the new I-71/I-75 bridge over the Ohio River. This area is an existing right-of-way owned by KYTC. It is close to the south approach of the new bridge with a short haul distance from the lay-down area to the new bridge.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST		
ORIGINAL DESIGN					
ALTERNATIVE					
SAVINGS (Original minus Alternative)					

SUMMARY OF VALUE ENGINEERING ALTERNATIVES


```
PROJECT: HAM-71/75-0.00/0.22, PID 75119
    Ohio Department of Transportation
    PROJECT ITEM NO. 6-17
    Kentucky Transportation Cabinet
DESCRIPTION: IN ALTERNATIVE E, REPLACE THE 5TH STREET
SHEET NO.:
1 of 4
NORTHBOUND RAMP TO I-71 IN KENTUCKY WITH AN
INDIRECT RAMP CONNECTION FROM THE
CONNECTOR-DISTRIBUTOR ROADWAY TO I-71 IN OHIO
```

ORIGINAL DESIGN: (See attached sketch)
In Alternative E, a loop ramp provides a direct connection from KY $5^{\text {th }}$ Street to I-71 northbound.

ALTERNATIVE: (See attached sketch)
Remove the loop ramp at KY $5^{\text {th }}$ Street and replace it with a ramp connection from the northbound collectordistributor roadway to I-71 northbound in Ohio.

ADVANTAGES:

- Provides access for all of Covington including $12^{\text {th }}$, Pike, $9^{\text {th }}, 5^{\text {th }}$, and $4^{\text {th }}$ Streets
- Excess right-of-way area could be used to mitigate the right-of-way take in Goebel Park

DISCUSSION:

This alternative removes direct access from KY $5^{\text {th }}$ Street but replaces this access with access from the collectordistributor roadway to I-71 northbound. By moving this access point to the connector distributor system, it will allow access from KY $12^{\text {th }}$, Pike, $9^{\text {th }}, 5^{\text {th }}$, and $4^{\text {th }}$ Streets to I- 71 northbound. A secondary benefit would allow excess right-of-way to be given to the city of Covington for an expanded park area.

COST SUMMARY	INITIAL COST		PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST	
ORIGINAL DESIGN	\$	398,710	-	\$	398,710
ALTERNATIVE	\$	863,892	-	\$	863,892
SAVINGS (Original minus Alternative)	\$	$(465,182)$	-	\$	$(465,182)$

SKETCH

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
ORIGINAL DESIGN $\square \quad$ ALTERNATIVE DESIGN $\square \quad$ BOTH $\square \quad$ SHEET NO.: 2 of 4

Remove Loop Ramp
Assume 1000^{\prime} total length 325^{\prime} structure
$675^{2} \times 26 / 9=1950$ by precentat area $325: 22 / 9393954$ stoweture area.

New Connection form NB C-D to T-71 NB
Asama too length of mas + mitered striation.
$1000 \times 26 \times / 9=433354$ stroke est.

Use 14^{\prime} tamed way 4' left oh, B'right sh
26' texture width Ramp.

COST WORKSHEET

PROJECT:	HAM-71/75-0.00/0.22, PID 75119	alternative no.:	
	Ohio Department of Transportation PROJECT ITEM NO. 6-17	P-5	
	Kentucky Transportation Cabinet		
DESCRIPTION:	ELIMINATE THE KENTUCKY 9TH STREET INTERSECTION WITH THE COLLECTOR-DISTRIBUTOR ROADWAY FROM ALL OPTIONS	SHEET NO.:	1 of 2

ORIGINAL DESIGN:
Currently, Hybrid Alternative CD, and Alternative E show the collector-distributor roadway intersecting with KY $9^{\text {th }}$ Street on both sides of I-71/I-75.

ALTERNATIVE: (See attached sketch)
Eliminate the KY $9^{\text {th }}$ Street intersection with the collector-distributor roadway from all options.

ADVANTAGES:

- Neighborhood retains its appeal for the residents
- Improves level of service and operation of the collector distributor roadway
- Reduces access along KY $9^{\text {th }}$ Street

DISADVANTAGES:

- Eliminates an indirect access point for the City of Covington
- $\quad 9^{\text {th }}$ Street would likely have a dead end on both sides of I-71/I-75

DISCUSSION:

In the past, the residents of the area around $9^{\text {th }}$ Street in Covington did not desire to have this connectivity due to the potential for a significant increase in traffic through the residential neighborhood. If this connection is eliminated, the collector-distributor roadway operation would be improved.

There is a possibility that the profile grade of the collector-distributor roadway could be raised allowing $9^{\text {th }}$ Street to be routed underneath and remain open. This should be investigated.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN			
ALTERNATIVE	DESIGN SUGGESTION		
SAVINGS (Original minus Alternative)			

P- Banimons morr

```
```

PROJECT: HAM-71/75-0.00/0.22, PID 75119

```
```

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
Kentucky Transportation Cabinet
DESCRIPTION: IN THE HYBRID ALTERNATIVE CD, IDENTIFY A
DESCRIPTION: IN THE HYBRID ALTERNATIVE CD, IDENTIFY A
SHEET NO.: 1 of 1
SHEET NO.: 1 of 1
SHORTER ROUTE FOR EMERGENCY RESPONSES FROM
SHORTER ROUTE FOR EMERGENCY RESPONSES FROM
THE FIRE STATION AT 5TH STREET AND CENTRAL
THE FIRE STATION AT 5TH STREET AND CENTRAL
AVENUE TO THE FORT WASHINGTON WAY TRENCH

```
```

AVENUE TO THE FORT WASHINGTON WAY TRENCH

```
```

ALTERNATIVE NO.:

Kentucky Transportation Cabinet
DESCRIPTION: IN THE HYBRID ALTERNATIVE CD, IDENTIFY A SHORTER ROUTE FOR EMERGENCY RESPONSES FROM THE FIRE STATION AT 5TH STREET AND CENTRAL AVENUE TO THE FORT WASHINGTON WAY TRENCH
P-7

SHEET NO.: 1 of 1
-

ORIGINAL DESIGN:
Currently, access to the Fort Washington Way Trench is from the Linn Street/US 50 Interchange.

ALTERNATIVE:

Provide access to the Fort Washington Way Trench via $6^{\text {th }}$ Street as proposed in Alternative E.

ADVANTAGES:

- Provides a quicker response route to incidents
- A two-way connection is provided from Central Avenue $/ 6^{\text {th }}$ Street west
- Eliminates US 50 eastbound to $5^{\text {th }}$ Street infrastructure

DISADVANTAGES:

- Additional capacity may be needed on Central Avenue
- Additional capacity may be required at the Central Avenue $/ 6^{\text {th }}$ Avenue intersection
- The city street grid may not be able to accommodate the traffic pattern changes

DISCUSSION:

Currently, from $5^{\text {th }}$ Street and Central Avenue in downtown Cincinnati, an emergency response unit would need to travel north on Central Avenue to west on $6^{\text {th }}$ Street; exit at Linn Street, turn left on Linn Street, then turn left onto $6^{\text {th }}$ Street eastbound to the Fort Washington Way Trench. If a solution similar to Alternative E is provided, the response route would be north on Central Avenue to west on $6^{\text {th }}$ Street to the south ramp at Fort Washington Way. The distance saved would be approximately $4,800 \mathrm{ft}$.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN			
ALTERNATIVE	DESIGN SUGGESTION		
SAVINGS (Original minus Alternative)			

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
DESCRIPTION: FOR THE ALTERNATE CD HYBRID, PROVIDE A DIRECT CONNECTION FROM THE SOUTHBOUND COLLECTOR DISTRIBUTOR ROADWAY TO 2ND STREET IN OHIO AND ADD AN ADDITIONAL CONNECTION TO US 42/3RD STREET

SHEET NO.: 1 of 6

ORIGINAL DESIGN: (Sketch attached)
The original Alternate CD Hybrid includes a free flow exit ramp from the proposed southbound collectordistributor roadway to 2nd Street in Cincinnati. Alternate CD Hybrid does not include a connection to US 42/3rd Street which provides access to the Clay Wade Bailey Bridge.

ALTERNATIVE: (Sketch attached)

Construct a ramp from the $2^{\text {nd }}$ Street free-flow exit ramp which will terminate at the US $42 / 3^{\text {rd }}$ Street Intersection. The ramp will branch off of the $2^{\text {nd }}$ Street ramp near the existing Artimis Building, and continue for approximately 600 ft ., terminating at the US $42 / 3^{\text {rd }}$ Street Intersection.

ADVANTAGES:

- Provides access to the Clay Wade Bailey Bridge
- Reduces congestion on the proposed Ohio River Bridge and existing Brent Spence Bridge by allowing traffic to cross the river using the Clay Wade Bailey Bridge
- Improves functionality of the City of Cincinnati street grid
- May have subsequent cost savings in the amount of collector-distributor required per the Conceptual Alternative Study

DISADVANTAGES:

- The proposed ramp will add construction cost to the project
- The US $42 / 3^{\text {rd }}$ Street intersection may need to be reconstructed to support the increased traffic volume
- The intersection on the Kentucky side of the Clay Wade Bailey Bridge may need to be reconstructed to support the increased traffic volume

COST SUMMARY	INITIAL COST		PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST	
ORIGINAL DESIGN	\$	0	-	\$	0
ALTERNATIVE	\$	\$1,437,344	-	\$	\$1,437,344
SAVINGS	\$	$(1,437,344)$	-	\$	$(1,437,344)$

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
DESCRIPTION: FOR THE ALTERNATE CD HYBRID, PROVIDE A DIRECT SHEET NO.: 2 of 6 CONNECTION FROM THE SOUTHBOUND COLLECTOR DISTRIBUTOR ROADWAY TO 2ND STREET IN OHIO AND ADD AN ADDITIONAL CONNECTION TO US 42/3RD STREET

DISCUSSION:
The main reason for the addition of this ramp is to provide direct access from the southbound collectordistributor to the Clay Wade Bailey Bridge and take advantage of available capacity. Providing an alternative route across the Ohio River could reduce congestion on the existing Brent Spence Bridge as well as the proposed Ohio River Bridge. This ramp can also improve the functionality of the City of Cincinnati street grid.

The design year southbound ADT across the Clay Wade Bailey Bridge is 11,190 vehicles without the additional direct access ramp. The bridge is not currently operating at its full traffic capacity. The VE Team recommends performing a traffic study to determine the impact of this proposed increase in utilization of the Clay Wade Bailey Bridge.

CALCULATIONS
lavender

- Length of proposed ramp $\approx 600^{\circ}$ (scaled from schematic sheet)
- Lane width of proposed ramp $=16^{\circ}$ (Per OOOT Land b Glume 1)
- Shoulder width of peppered ramp $=6^{\prime}$ outside $+3^{\prime}$ reside $=90$ (Pe dot Bond O withe 1)

$$
\begin{aligned}
\text { Pavement area } & =600^{\prime} \times\left(16^{\prime}+9\right) \\
& \left.=15,0000^{\prime}\right) \\
& \approx 1667 \mathrm{sp} . \mathrm{yd}^{\prime}
\end{aligned}
$$

Cost of ramp pavement
per the consultant's eistiomede $=\$ 68 / s q \cdot y d$.

$$
\begin{aligned}
\text { Save cost of } & =1667 / 5 \cdot \cdot y^{2}, \times \$ 68 / \mathrm{spog} \text {. } \\
& \approx \$ 113,0000
\end{aligned}
$$

Embankment
Ofternuce in elevation from chat we ramp to interaction $=35^{\circ}$

- $\cosh \tan =600^{\circ}$

Ag g, neigh $\frac{-35^{\circ}+0^{\prime}}{2}=17.5^{\circ}$
so $(17.5)(110)\left(600^{2}\right)=1155,000 \% 27=43,000$ ca. yd.
cost per consultant's $_{\text {estimate }}=\$ 6 / e \mathrm{y}, \mathrm{yd}$. $5043,000 \times 46$

$$
=\$ 258,000
$$

Guardrail, Type 5

$$
\begin{aligned}
& \text { Length }=600^{\circ} \times 2(\text { both sides })=1200^{\prime} \\
& \quad \text { Cost per consittan's estimate }=\$ \mathrm{M} / \mathrm{ft} \rightarrow\left(1200^{\prime}\right)(\$ 19 / \mathrm{ft})=\$ 17000_{56}^{\circ}
\end{aligned}
$$


```
PROJECT: HAM-71/75-0.00/0.22, PID }7511
    Ohio Department of Transportation
    PROJECT ITEM NO. 6-17
    Kentucky Transportation Cabinet
DESCRIPTION: FOR THE HYBRID ALTERNATIVE CD, PROVIDE ACCESS SHEETNO.: 1 of 3
    FROM WINCHELL AVENUE JUST NORTH OF EZZARD
    CHARLES DRIVE TO NORTHBOUND I-75
```

ALTERNATIVE NO.:
P-10
Kentucky Transportation Cabinet

```
DESCRIPTION: FOR THE HYBRID ALTERNATIVE CD, PROVIDE ACCESS SHEETNO.: \(\mathbf{1}\) of 3 FROM WINCHELL AVENUE JUST NORTH OF EZZARD CHARLES DRIVE TO NORTHBOUND I-75
```


ORIGINAL DESIGN:

The Hybrid Alternative CD design does not provide access from Winchell Avenue north of Ezzard Charles Drive to northbound I-75.

ALTERNATIVE:

Provide access from the Winchell Avenue north of Ezzard Charles Drive to northbound I-75.

ADVANTAGES:

- Provides quicker access to northbound I-75 directly from Winchell Avenue without having to travel $7,000 \mathrm{ft}$ to the north of the Western Hills Viaduct

DISADVANTAGES:

- Requires design and construction of an additional access ramp
- May require structural work at Liberty Street

DISCUSSION:

Adding a ramp to northbound I-75 from Winchell Avenue north of Ezzard Charles Drive will reduce the amount of traffic on Winchell Avenue and allow quicker access for local traffic to northbound I-75. The current daily hourly vehicles for this movement is 750 at the peak hour. An additional cost of approximately one million dollars must be weighed against the need and benefit achieved by adding this ramp.

This alternative will require a study of potential structural work which may be required at Liberty Street.

COST SUMMARY	INITIAL COST		PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST	
ORIGINAL DESIGN	\$	0	-	\$	0
ALTERNATIVE	\$	999,433	-	\$	999,433
SAVINGS (Original minus Alternative)	\$	$(999,433)$	-	\$	$(999,433)$

Given:

1) Exiting traffic currently using entrance lamia for NB IT 75 , north of Fard Charles Er. per. a/0108 certified traffic (ODOT, office of Ten Services)

$$
\begin{aligned}
& \text { AH E AM DHV }=510 \\
& \text { AH E } P M \text { DHV }=750
\end{aligned}
$$

2) Ramp width per ODOT $\angle E D=25 \mathrm{ft}$
3) Cost estimates per DDOT el Estimator
4) Require rams length $=1 / 10 \mathrm{ft}$.

Assumption:
i) Structure at Liberty cam bo widement to a ceomodete addition st lane.
2) Additional lane caw bo built between IR 75 and wirchelle
3) Ana requited retina we or noise wills will not change.
 Calculation:

1) Additional stuelure width required over Liberty Street 12 ft wide $\times 200 \mathrm{ff} \operatorname{long} \times 125.00 \mathrm{H} / \mathrm{A}^{2}(\mathrm{Ting} 505)=30000000$
2) Now ramp from just north of Errand akertes to math of Liberty $1400 \mathrm{ft} \times 25 \mathrm{ft} \times \frac{144}{99^{2}} \times 684 / 12(2 \mathrm{ten} 122)=26 \%, 464=0$
3) Addition d needed all $14004+25+4 \frac{16+4}{2} \times \frac{y^{3}}{214^{3}} \times 6.0 \frac{15}{1 / 2}($ Iran 315$)=62,222$

COST WORKSHEET


```
PROJECT: HAM-71/75-0.00/0.22, PID 75119
    Ohio Department of Transportation
    PROJECT ITEM NO. 6-17
    Kentucky Transportation Cabinet
DESCRIPTION: FOR THE HYBRID ALTERNATIVE CD, UPDATE THE
COST ESTIMATE TO REFLECT AN ADDITIONAL LANE
ON THE I-75 MAINLINE
```

ORIGINAL DESIGN:
In the Conceptual Alternative Study (CAS), Alternatives C and D were evaluated with two lanes northbound and two lanes southbound on I-75.

ALTERNATIVE:

Update the cost estimate in the Hybrid Alternative CD to include three lanes northbound and three lanes southbound on I-75 to match Alternative E.

ADVANTAGES:

- Matches the number of lanes provided with Alternative E

DISADVANTAGES:

- None identified

DISCUSSION:

As a result of recommendations confirmed in the CAS, Alternatives C and D will be combined into a hybrid alternative. The new Hybrid Alternative CD will be further designed and evaluated with three lanes for $\mathrm{I}-75$ in each direction. This update is required to show the change in the base cost for Hybrid Alternative CD.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN			
ALTERNATIVE	DESIGN SUGGESTION		
SAVINGS (Original minus Alternative)			

COST WORKSHEET


```
PROJECT: HAM-71/75-0.00/0.22, PID 75119
    Ohio Department of Transportation
    PROJECT ITEM NO. 6-17
    Kentucky Transportation Cabinet
DESCRIPTION: FOR ALTERNATIVE E, SHIFT THE COLLECTOR-
DISTRIBUTOR ROADWAY TO MINIMIZE IMPACTS TO
    GOEBEL PARK AND AVOID RELOCATING THE RADIO
    STATION TOWER
```

P-13

SHEETNO: $\mathbf{1}$ of $\mathbf{2}$

ORIGINAL DESIGN: (See attached sketch)
In the original design for Alternative E, the current local street/collector-distributor roadway just north of $9^{\text {th }}$ Street in Kentucky requires the relocation of the radio station tower and encroachment into Goebel Park.

ALTERNATIVE: (See attached sketch)
Shift the local street/collector-distributor roadway to the north in a stacked configuration with the collectordistributor roadway above the local street to avoid impact to the radio tower and Goebel Park.

ADVANTAGES:

- Avoids radio tower relocation
- Minimizes impact to Goebel Park

DISADVANTAGES:

- The intersection of the new local street with $9^{\text {th }}$ Street under an overhead structure may limit sight distance

DISCUSSION:

Shifting the local street/collector distributor roadway to the west to miss the radio tower will avoid a costly and difficult relocation of an AM radio station antenna. The shift may also have a benefit of reducing impacts to Goebel Park, which is a Section 6 f resource.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN			
ALTERNATIVE	DESIGN SUGGESTION		
SAVINGS (Original minus Alternative)			

SKETCH

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet

ORIGINAL DESIGN \square ALTERNATIVE DESIGN \qquad вотн \searrow
SHEET NO.: 2 of 2

SUMMARY OF VALUE ENGINEERING ALTERNATIVES

PROJECT: HAM-71/75-0.00/0.22, PDD 75119
ALTERNATIVE NO.:
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
S-1

DESCRIPTION: PROVIDE AN EXIT FROM THE NORTHBOUND
COLLECTOR-DISTRIBUTOR ROADWAY TO EZZARD CHARLES AND INCLUDE IN THE HYBRID ALTERNATIVE CD DESIGN SIMMAR TO THAT SHOWN IN THE ALTERNATIVE E DESIGN

ORIGINAL DESIGN:

In the Hybrid Alternative CD design, the collector-distributor roadway carries Northern Kentucky traffic across the Brent Spence Bridge to Ohio exits to $2^{\text {nd }}$ Street east and $6{ }^{\text {th }}$ Street/US 50 west, and then merges with northbound I-75 below Ezzard Charles Drive. There is no direct access to the Museum Center except to take $6^{\text {th }}$ Street west to Freeman Avenue, travel north on Freeman Avenue to Winchell Avenue, and then cross Ezzard Charles Drive to the Museum Entrance.

ALTERNATIVE:

Add a drop lane from the collector-distributor roadway and merge this with the frontage road between $9^{\text {th }}$ Street and Linn Street. This frontage road merges with Freeman Avenue and crosses Ezzard Charles Drive.

ADVANTAGES:

- More direct access to the Museum Center and Amtrak railroad from Kentucky and Fort Washington Way
- A portion of traffic currently exiting at $5^{\text {th }}$ Street and $6^{\text {th }}$ Street will now use the new exit to access the Museum Center and reduce congestion

DISADVANTAGES:

- This alternative would create a braided merge between the collector-distributor road and oncoming traffic from $6^{\text {th }}$ Street and $9^{\text {th }}$ Street
- A design exception may be required for the length of the collector-distributor roadway deceleration lane which requires 400 feet minimum

DISCUSSION:

A certified travel analysis is recommended to determine the potential benefit of the proposed new exit. No additional right-of-way or retaining walls will be required other than what is already proposed for the Hybrid Alternative CD Frontage Road (i.e., Queens Gate Park). Utility and cultural impacts would remain unchanged also.

The design year average daily traffic (ADT) for the new collector-distributor roadway is 42,770 based upon Alternative C traffic data. The design year ADT for Winchell Avenue from $9^{\text {th }}$ Street to Freeman Avenue is 10,520. An unknown percentage of collector-distributor traffic will be added to Winchell Avenue.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST	
ORIGINAL DESIGN				
ALTERNATIVE	DESIGN SUGGESTION			
SAVINGS (Original minus Alternative)				

PROJECT:	HAM-71/75-0.00/0.22, PID 75119	ALTERNATIV	
	Ohio Department of Transportation	S-2	
	PROJECT ITEM NO. 6-17 Kentucky Transportation Cabinet		
DESCRIPTION:	WITH ALL OPTIONS, USE TIE-BACK RETAINING WALLS	SHEET NO.:	1 of 2
	ON THE WEST SIDE OF I-75 SOUTHBOUND AND IN		
	OTHER APPLICABLE AREAS TO REDUCE RIGHT-OF-		
	WAY ACQUISTION REQUIREMENTS		

ORIGINAL DESIGN:

The original design identifies "Potential Impact" areas outside of the existing right-of-way on the west side of I75 southbound in Kentucky.

ALTERNATIVE: (See attached sketch)

Use tie-back retaining walls in selected areas from Kyle's Lane to approximately 7,000 ft. north of Kyle's Lane and in other applicable areas on the west side of southbound I-75 in Kentucky to reduce right-of-way acquisition requirements.

ADVANTAGES:

- Reduces right-of-way acquisition
- Improves stability of cut slopes
- Reduces excavation
- Reduces long term maintenance costs
- Reduces potential for damage to adjacent
properties

DISCUSSION:

Tieback retaining walls could be used in areas where there is potential for impact outside of existing right-ofway areas. Based upon the "Potential Right-of-Way Impacts" identified in Alternatives CD and E, this would apply to approximately 2,500 linear ft .

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN			
ALTERNATIVE	DESIGN SUGGESTION		
SAVINGS (Original minus Alternative)			

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet

ALTERNATIVE NO.:
S-4

SHEET NO.:
1 of 1 POTENTIAL STRUCTURAL IMPACTS TO THE 12-FT. BY 14-FT. WILLOW RUN COMBINED SEWER DURING CONSTRUCTION

ORIGINAL DESIGN:

Hybrid Alternative CD shows a mechanically stabilized embankment (MSE) wall located directly above the Willow Run Combined Sewer between $9^{\text {th }}$ Street and $5^{\text {th }}$ Street in Covington, KY. Alternative E has a lesser impact but still has a wall located over the sewer.

ALTERNATIVE:

Considering the age of the Willow Run Combined Sewer, its present condition and poor soil conditions, the project should minimize loading over the sewer to avoid damage and/or replacement of the facility at a cost to the project. Avoid construction over the sewer as much as feasible and consider alternative means to minimize impacts to the facility sewer lining.

ADVANTAGES:

- Eliminates the need to rehabilitate or replace the sewer
- Reduced impact will reduce delays caused by potentially unknown utility issues

DISADVANTAGES:

- May be more costly than conventional construction
- May create vertical and/or horizontal alignment and design issues

DISCUSSION:

The existing Willow Run Combined Sewer is a brick lined structure in poor condition. The soils in the project area are soft and are anticipated to undergo significant settlement due to the new highway loading. The settlement would be potentially damaging to the sewer.

The design team should avoid construction over the sewer as much as feasible and consider the use of a lightweight fill or structural means to protect the sewer lining where impact is unavoidable.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN			
ALTERNATIVE	DESIGN SUGGESTION		
SAVINGS (Original minus Alternative)			

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
DESCRIPTION: FOR THE HYBRID ALTERNATE CD, MAKE THE TRAFFIC SHEET NO.: $\mathbf{1}$ of $\mathbf{5}$ OPERATIONS DIRECTIONAL ON EACH DECK ON THE NEW BRIDGE TO SAVE ONE LANE PER DECK

ORIGINAL DESIGN: (See attached sketch)
The original design calls for a new 127-ft.-wide, two-level bridge including six lanes for I-75 (three lanes for northbound and three lanes for southbound) on the upper deck and four lanes (two lanes for southbound local traffic and two lanes for southbound I-71 traffic on the lower deck).

ALTERNATIVE: (See attached sketch)

Reduce the deck width by 12 -feet by providing a new 115 -ft.-wide, two-level bridge including five lanes (three lanes for southbound I-75 and two lanes for southbound I-71) on the upper deck and five lanes (two lanes for southbound local traffic and three lanes for northbound I-71).

ADVANTAGES:

- Matches deck width to lane requirements
- Reduces new bridge overall width
- Reduces encroachment into the historic area to the west of the structure

DISADVANTAGES:

- Limits future expansion on the lower deck by converting shoulders to lanes
- Adds complexity to the geometry at the north end of the bridge

DISCUSSION:

The new two-level bridge may be reconfigured to five lanes per deck to reduce the overall width thus limiting future expansion by converting shoulders to lanes.

COST SUMMARY	INITIAL COST		PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST	
ORIGINAL DESIGN	\$	567, 401,472	-	\$	567, 401,472
ALTERNATIVE	\$	513,809,472	-	\$	513,809,472
SAVINGS (Original minus Alternative)	\$	53,592,000	-	\$	53,592,000

reduce deck by 12^{\prime} each level

Length from alt 'E' cstimonte

$$
\begin{aligned}
& 444,672 \text { SF } A 1+E / 127^{\prime} \text { proposed deck } \\
& =3501 \text { L.F in } 2 \text { lecols } \\
& =1750 \text { L.F. per level } \\
& \therefore \text { sf reduction }=12^{\prime} \text { width } \times 1750^{\prime} \text { length y } 2 \text { daks }
\end{aligned}
$$

$$
=42,0005 E
$$

COST WORKSHEET

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
Kentucky Transportation Cabinet
DESCRIPTION: FOR THE HYBRID ALTERNATE CD, MAKE THE TRAFFIC SHEETNO.: 1 of 4 OPERATIONS DIRECTIONAL ON EACH DECK ON THE NEW BRIDGE TO SAVE ONE LANE PER DECK

ORIGINAL DESIGN: (See attached sketch)

The original design calls for a new 127-ft.-wide, two-level bridge including six lanes for I-71 (two lanes for northbound I-71 and three lanes for southbound I-71 with one unused lane) on the upper deck and six lanes (three lanes for northbound I-75 and three lanes for southbound I-75) on the lower deck.

ALTERNATIVE: (See attached sketch)
Reduce the deck width by 12 ft . by providing a new 115 -ft.-wide, two-level bridge including five lanes (three lanes for southbound I-75 and two lanes for southbound I-71) on the upper deck and five lanes (three lanes for northbound I-75 and two lanes for northbound I-71) on the lower deck.

ADVANTAGES:

- Matches deck width to lane requirements
- Reduces new bridge overall width
- Reduces encroachment into the historic area to the west of the structure
- Uses more existing bridge capacity

DISADVANTAGES:

- Limits future expansion on the lower deck by converting shoulders to lanes
- Eliminates one lane for I-71 southbound

DISCUSSION:

The new two-level bridge may be reconfigured to five lanes per deck to reduce the overall width thus limiting future expansion by converting shoulders to lanes.

COST SUMMARY		INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN	$\$$	$\mathbf{5 6 7 , 4 0 1 , 4 7 2}$	-	$\$$
ALTERNATIVE	$\$$	$\mathbf{5 1 3 , 8 0 9 , 4 7 2}$	-	$\$$
SAVINGS (Original minus Alternative)	$\$$	$\mathbf{5 3 , 5 9 2 , 0 0 0}$	-	$\$ \mathbf{5 1 3 , 8 0 9 , 4 7 2}$

reduce beck by 12 each lead

Length from alt 'E' estimate

$$
\frac{\operatorname{lon} 7^{t h} \text { from alt 'E' estimate }}{444,6725 f A 1 t E / 127 \text { ' proposed deck width }}
$$

$$
=3501 \text { Li in } 2 \text { lolls }
$$

$$
=1750 \text { L.F. per level }
$$

\therefore Sf reduction $=12^{\prime}$ width $\times 1750^{\prime}$ length $x 2$ daks

$$
=42,0005 E
$$

COST WORKSHEET

SUMMARY OF VALUE ENGINEERING ALTERNATIVES

PROJECT: HAM-71/75-0.00/0.22, PID 75119
Ohio Department of Transportation
PROJECT ITEM NO. 6-17
ALTERNATIVE NO.:

Kentucky Transportation Cabinet
DESCRIPTION: FOR ALL OPTIONS, REALIGN SECTION 1 TO THE EAST TO REDUCE RIGHT-OF-WAY AND EXCAVATION REQUIREMENTS

ORIGINAL DESIGN: (see attached sketch)
In the original design, all widening of I-75 is shown to the west side of the existing centerline in the Kentucky "Cut in the Hill" section.

ALTERNATIVE: (see attached sketch)
Construct some of the I-75 widening to the east side of existing centerline; specifically $2,000 \mathrm{ft}$. south of $12^{\text {th }}$ Street to $4,500 \mathrm{ft}$ south of $12^{\text {th }}$ Street. Also, explore where I-75 gets close to Highland Avenue. However, it is less desirable here due to slope stability issues.

ADVANTAGES:

- Eliminates expensive walls on west side in "Hill" section
- Better use of existing right-of-way
- Less disruption to existing storm facilities

DISADVANTAGES:

- Maintenance of traffic becomes more complicated because Stage 1 work is now on both sides of the interstate
- Highland Avenue section has slope stability and flooding issues
- Geometry may be less desirable with the new hospital, now a restriction at the northern end
- May interfere with the proposed light rail corridor

DISCUSSION:

This item should be investigated to determine if significant cost avoidance can be realized by eliminating excavation and/or the retaining wall on the west side of I-71/I-75 in Kentucky in the "Cut in the Hill" section. Approximately one-half mile could be widened on the east side which would save construction and right-of way costs. The same principle may apply where I-71/I-75's alignment gets close to Highland Avenue. However, in this location, the costs may be offset because tieback walls would likely be necessary and there are drainage concerns. The centerline of I-71/[-75 could only be shifted here about 40 ft . The centerline could be shifted 200 ft . in "Hill" section. Additionally, in the "Cut in the Hill" section, the centerline could be shifted to preserve the proposed light rail corridor.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST
ORIGINAL DESIGN			
ALTERNATIVE	DESIGN SUGGESTTION		
SAVINGS (Original minus Alternative)			


```
PROJECT: HAM-71/75-0.00/0.22, PID 75119
    Ohio Department of Transportation
    PROJECT ITEM NO. 6-17
    Kentucky Transportation Cabinet
DESCRIPTION: SPECIFY THAT RECYCLED CONCRETE PAVEMENT IS SHEET NO.: 1 of 1
ACCEPTABLE FOR USE AS SUB-GRADE STABLIZATION
IN KENTUCKY
```


ORIGINAL DESIGN:

Presently, KYTC Standard Specifications do not permit the use of recycled concrete pavement as subgrade stabilization. The ODOT Specifications permit the use of recycled concrete as granular fill provided the contractor processes the material correctly.

ALTERNATIVE:

Provide a Special Provision for the Kentucky portion of the project allowing the reuse of the concrete pavement as granular fill in subgrade stabilization applications and consider this in the pavement design.

ADVANTAGES:

- Reduces waste generation
- Known availability of material

DISADVANTAGES:

- Large area needed for processing
- Removal of reinforcing steel from the concrete is time consuming
- Potential long-term maintenance issue (drainage clogging)
- Material quality to meet specifications may be difficult
- Limited number of contractors may be available that can process material to a gradation specification

DISCUSSION:

Providing the contractor an option to reuse the concrete pavement permits the contractor to decide the economic advantages of reusing the concrete pavement. However, forcing the contractor to reuse the concrete pavement may result in an increased cost due to processing and material storage issues.

COST SUMMARY	INITIAL COST	PRESENT WORTH RECURRING COSTS	PRESENT WORTH LIFE-CYCLE COST	
ORIGINAL DESIGN				
ALTERNATIVE	DESIGN SUGGESTION			
SAVINGS (Original minus Alternative)				

PROJECT DESCRIPTION

NEED AND PURPOSE

The Brent Spence Bridge Replacement/Rehabilitation Project is needed to improve the operational characteristics within the I-71/I-75 corridor for both local and through traffic. In the Greater Cincinnati, Ohio/Northern Kentucky region, the I-71/I-75 corridor suffers from congestion and safety-related issues as a result of inadequate capacity to accommodate current traffic demand. The purpose of this project is to:

- Improve traffic flow and level of service (LOS),
- Improve safety
- Correct geometric deficiencies, and
- Maintain connections to key regional and national transportation corridors.

Traffic Flow and Level of Service

Traffic analyses completed for the Existing and Future Conditions Report (February 2006) determined that approximately 160,000 vehicles per day use the Brent Spence Bridge and traffic volumes are projected to increase to approximately 200,000 vehicles per day in 2035. A major cause of congestion is the inability of the interstate facility to handle current and future travel demand. In 2005, traffic data and the current and design year 2035 level of service on I-75 were analyzed. For current traffic, during the AM peak hour, 48 percent of the freeway segments analyzed operated at LOS D or worse. During the PM peak hour, 63 percent of the I-75 freeway segments analyzed were at LOS D or worse. For design year 2035, during the AM peak hour, 64 percent of the freeway segments were at LOS D or worse and during the PM peak hour, 95 percent of the freeway segments were at LOS D or worse.

Congestion problems are area wide and not limited to spot locations. These failures are occurring in both Ohio and Kentucky. The level of congestion on I-75 is the primary reason for commuter delays and longer travel times that are currently being experienced within the corridor.

Safety

Crash rates for the I-71/I-75 corridor exceed the Kentucky and Ohio statewide averages. Within Kenton County, Kentucky, crash rates along I-71/I-75 average 1.30 accidents per million vehicle miles traveled, which is 1.67 times higher than the statewide average. The average crash rate for the Ohio section of I-71 in the study area is 3.22 accidents per million vehicle miles traveled, which is 1.7 times higher than the statewide average. Within the overall study area, I-75 has a crash rate of 2.91 accidents per million vehicle miles, which is approximately 1.5 times higher than the statewide average rate.

The ODOT Highway Safety Program (HSP) identifies and ranks all crash locations on the state system based on crash rate, frequency, density, severity, and other analytical factors. The 2005-2007 HSP list includes two highway segments within the study area which are ranked in the top 100 , most notably, the section of I-71 from mile post 0.60 to mile post 1.10 is ranked seventh.

Geometric Deficiencies

The geometric design features of I-71 and I-75 within the study area do not meet current standards for an interstate highway facility. Design deficiencies include:

- Substandard vertical alignments with limited stopping distances,
- Acceleration and deceleration lanes that are not of sufficient length for anticipated traffic volumes and movements,
- Narrow shoulders that present safety hazards, make maintenance of traffic difficult; and contribute to traffic delays when crashes, vehicle breakdowns, or scheduled roadwork require lane restrictions.

National, Regional, and Local System Linkage

The I-71/I-75 corridor in the Greater Cincinnati/Northern Kentucky area is a significant transportation corridor, not only for local access and mobility needs, but also for regional, statewide, and national access and mobility needs. This corridor is recognized in county and regional transportation plans, as are the recommendations for needed improvements. In addition, I-71 and I-75 are key links in the national transportation system in terms of people movement, freight movement, and national defense. Transportation plans and recommendations at all levels recognize that these facilities now operate at or below capacity and therefore, need to be upgraded to modern standards to maintain these important transportation links.

PROJECT LOCATION

The project study area is located along a seven mile segment of I-75 within the Commonwealth of Kentucky and the State of Ohio. The southern limit of the project is 2,300 feet south of the midpoint of the interchange of I-75 and Dixie Highway (US 127/US 42/US 25) in Kentucky (Exit 188). The northern limit of the project is 1,500 feet north of the midpoint of the interchange of I-75 and the Western Hills Viaduct in Ohio (Exit 2B). The eastern and western limits of the study area follow the existing alignment of I-75. In Kentucky, the study area is a 1500 -ft.-wide corridor centered on I-75 south of the City of Covington. See Figure 1: Project Area on the following page.

EXISTING CONDITIONS

I-75 connects the Greater Cincinnati/Northern Kentucky region with Detroit, Michigan to the north and Miami, Florida to the south. It also connects with I-74 and US 50 to the east and west. I-75 and the railroads that run parallel to it through this region are among the nation's busiest. This transportation system is the backbone of commerce and travel through the region. According to Federal Highway Administration (FHWA) estimates, I-75 is one of the busiest trucking routes in North America with truck traffic approaching six billion miles annually. In addition, more than 250 freight trains per day pass through or have destinations within the I-75 corridor. The interstate portions of this transportation system are nearly 50 years old and significant safety and capacity problems exist.

The built environment surrounding I-75 and the Brent Spence Bridge is characterized by highly disturbed, dense urban development with historic districts and properties nearby. I-75 in Cincinnati is a typical downtown freeway with closely spaced ramps and poor roadway geometry. Within the past few years several reconstruction and rehabilitation projects were performed in the area.

The National Bridge Inventory lists the Brent Spence Bridge as functionally obsolete due to the capacity, sight distance, and safety concerns associated with its current configuration. These concerns have led to this project being considered a top priority by KYTC, ODOT, the Ohio-Kentucky-Indiana Regional Council of Governments, and the cities of Covington, Kentucky, and Cincinnati, Ohio.

Figure 1: Project Area

FEASIBLE ALTERNATIVES

The comparative analysis led to the recommendation of carrying forward two feasible alternatives. The two feasible alternatives consist of Alternative E and a combination of Alternatives C and D (Hybrid Alternative CD). Based on the analyses completed and feedback as part of community input, it was also recommended that certain design elements of Alternative G be incorporated into the two feasible alternatives in Step 6 of the ODOT's Project Development Process. Additionally, the two feasible alternatives would be designed to provide three lanes in each direction on I-75.

Alternative G was eliminated from further consideration due to the high costs, and residential and business displacements associated with this alternative. However, the following beneficial design features of Alternative G would be carried forward for further analysis and incorporated into Alternative E and Hybrid Alternative CD:

- Access to the north end of Clay Wade Bailey Bridge from I-75 southbound using a collectordistributor roadway and US 50 eastbound;
- Two access points into Covington;
- Access from a northbound collector-distributor roadway from KY to I-71 northbound in Ohio; and
- An access ramp just north of Ezzard Charles Drive for Freeman Avenue and local traffic to I75 northbound.

HYBRID ALTERNATIVE CD

Hybrid Alternative CD south of KY 12th Street has six lanes northbound and six lanes southbound. A local collector-distributor roadway is provided from KY 12th Street to the Ohio River. A new double deck bridge would be built just west of the existing Brent Spence Bridge for I-75 (three lanes in each direction), two lanes for southbound I-71 and two lanes for southbound local traffic. The existing Brent Spence Bridge would be rehabilitated to carry two lanes for northbound I-71 and three lanes for northbound local traffic. Hybrid Alternative CD reconfigures I-75 through the I-71/I-75/US 50 Interchange and eliminates all access to and from I-75 from KY 12th Street to just south of Ezzard Charles Drive in the northbound direction. Between Ezzard Charles Drive and the Western Hills Viaduct, northbound I-75 would have five lanes, southbound I-75 would have two lanes, and the local southbound collector-distributor roadway would have four lanes, for a total of 11 travel lanes. Western and Winchell Avenues would be improved to carry local traffic.

Access to downtown Cincinnati would be made through a series of collector-distributor roadways that would require a decision point outside of the downtown area. In the northbound direction just north of the existing Brent Spence Bridge, the collector-distributor roadway lane configuration is combined on a single structure between the Ohio (OH) 2nd Street diverge and the OH 5th Street diverge. Using a single structure in this area simplifies the vertical geometric design, and reduces costs. A negative aspect to combining the lane configuration onto a single structure is that it would introduce a weave movement north of OH 5 th Street from traffic coming from I-71 southbound traveling towards the Western Hills Viaduct. Upon analyzing the weave movement, no degradation of level of service was noted.

In the southbound direction, the collector-distributor roadway remains west of I-75. Traffic entering from Western Avenue would have access to I-71 northbound and US 50 eastbound by using a weave condition. The ramp access to OH 5 th Street would remain.

Hybrid Alternative CD requires approximately 22.2 acres of additional right-of-way. This is the second least amount of land impacted by the conceptual alternatives. Hybrid Alternative CD would displace 16 residential units and 35 businesses. Approximately 300 employees would be affected by this alternative. Hybrid Alternative CD, as with Alternative E would impact Longworth Hall which includes 21 businesses. Hybrid Alternative CD would impact three wetland areas, 10 woodlots and one potential threatened and endangered species habitat area, four community resources, three historic resources, and five Section 4(f) properties. Hybrid Alternative CD would be compatible with existing land use plans and would not have a negative impact on community cohesion. Hybrid Alternative CD would be constructed within the existing interstate corridor and not bisect neighborhoods in Kentucky or Ohio. Alternative CD would support the Queensgate redevelopment plans and help Cincinnati facilitate its economic renewal goals.

Since the alignment of Hybrid Alternative CD would be located just west of the existing Brent Spence Bridge, it would impact a portion of the Duke Energy West End substation and require the relocation of 52 individual utility facilities. Hybrid Alternative CD would directly impact four Section 4(f) resources: Goebel Park, the Lewisburg Historic District, Longworth Hall, and the Queensgate playground and ballfields. Hybrid Alternative CD could have noise and visual impacts on one Section 4(f) resource, the Harriet Beecher Stowe Elementary School (Fox 19 Television Station).

Alternative C would encroach upon the Lewisburg Historic District along its eastern border and directly impact 0.83 acres of the historic district. It would displace 10 residences adjacent to the west side of I-71/I-75, one of which is a non-contributing property to the historic district. Alternative C would directly impact 0.25 acres of Longworth Hall resource including the building and historic boundary.

ALTERNATIVE E

Alternative E south of KY 12th Street has six lanes northbound and six lanes southbound. It provides two access points into Covington for both northbound and southbound traffic. A local collectordistributor roadway would be provided from KY 12th Street to the Ohio River. A new double deck bridge would be built just west of the existing Brent Spence Bridge to carry northbound and southbound I-71 and I-75 traffic. On the upper deck, I-71 southbound would have three lanes and I71 northbound would have two lanes. On the lower deck, I-75 would have three northbound and three southbound lanes. The existing Brent Spence Bridge would be rehabilitated to carry northbound and southbound local traffic with two lanes in each direction as this number of lanes provides an acceptable level of service.

In Ohio, Alternative E reconfigures I-75 through the I-71/I-75/US 50 Interchange and eliminates some of the existing access points along I-75. The existing direct connections between I-75 to westbound US 50 and from eastbound US 50 would be maintained in Alternative E. Between Ezzard Charles Drive and Western Hills Viaduct, southbound I-75 would have six lanes, northbound I-75 would have five lanes, and there would be one auxiliary lane to the Western Hills Viaduct. Western and Winchell avenues would be improved to carry local traffic.

The alignment of Alternative E is similar to Hybrid Alternatives CD in that it provides a new bridge alignment just west of the existing Brent Spence Bridge. Alternative E provides two direct access points to Covington in both the northbound and southbound directions. In the northbound direction,
access would be provided by the local collector-distributor roadway at KY 12th Street and KY 5th Street. In the southbound direction, access would be provided by the local collector-distributor roadway at KY 5th Street, and off of I-71 and I-75 at KY $9^{\text {th }}$ Street. Access to the interstate system from Covington would be provided by local city streets. In the northbound direction, access to I-75 would be provided at KY 9th Street, access to I-71 would be provided at KY 5th Street. Access to I75 northbound would also be provided at KY 4th and 5th Streets through the local collectordistributor roadway across the lower deck of the existing Brent Spence Bridge. In the southbound direction, access to I-71/I-75 would be provided at KY 5th Street and KY 12th Street. All access to downtown Cincinnati from I-75 would be provided by a collector-distributor roadway that would require a decision point outside of the downtown area, KY 12th Street for northbound traffic and just south of Ezzard Charles Drive for southbound traffic. Access to I-75 northbound would be provided at OH 4 th and 6th streets through the local collector-distributor roadway and at OH 9th Street through Winchell Avenue. Southbound I-75 access would be provided at Western Avenue, OH 8th Street, and OH 4th Street through the local collector-distributor roadway across the upper deck of the existing Brent Spence Bridge.

When compared to Hybrid Alternative CD, Alternative E is expected to have similar environmental impacts. Alternative E would impact three wetland areas, 10 woodlots and one potential threatened and endangered species habitat area. Alternative E would impact three community resources, two historic resources, one historic district, and four Section 4(f) properties. This is slightly fewer impacts than other conceptual alternatives. Alternative E would displace 19 residential units and 39 businesses, which is the fewest number of people displaced among alternatives. Alternative E, as with Hybrid Alternative CD, would impact Longworth Hall which includes 21 businesses. In addition, the 19 residential units estimated to be displaced to build Alternative E is expected to result in the fewest number of people displaced.

Alternative E would be compatible with existing land use plans and would not have a negative impact on community cohesion. Alternative E would be constructed within the existing interstate corridor and not bisect neighborhoods in Kentucky or Ohio. Alternative E would support the Queensgate redevelopment plans and help Cincinnati facilitate its economic renewal goals. Since the alignment of Alternative E would be located just west of the existing Brent Spence Bridge, it would impact a portion of the Duke Energy West End substation and require the relocation of 52 individual utility facilities. Alternative E would directly impact three Section 4(f) resources Goebel Park, the Lewisburg Historic District, and Longworth Hall. It could also have noise and visual impacts on one Section 4(f) resource, the Harriet Beecher Stowe Elementary School (Fox 19 Television Station).

Alternative E would encroach upon the Lewisburg Historic District along its eastern border and impact 0.98 acres of the historic district. It would displace 11 residences adjacent to the west side of I-71/I-75, one of which is a non-contributing property to the historic district. Alternative E would impact 0.54 acres of Longworth Hall resource including the building and historic boundary. The eastern end of the building would be demolished. It is expected that individual Section 4(f) evaluations would be prepared for the Lewisburg Historic District and Longworth Hall due to the adverse effects of Alternative E.

PROJECT SCHEDULE AND CONSTRUCTION COSTS

The following is the schedule for the Brent Spence Bridge Replacement/Rehabilitation Project, which follows construction of the Mill Creek Expressway and Thru the Valley projects.

- Completion of preliminary design and NEPA process - 2011
- Detailed design - 2011
- Right-of-way acquisition - 2012-2014
- Construction begins - 2015
- Midpoint of Construction - June 2017
- Completion of Construction - 2020

The total estimated project costs are construction costs which include a design contingency, a construction inflation factor, right-of-way for roadway and utility relocations, major utility, and total project development costs. The table below summarizes the total estimated project costs.

Total Cost Estimates for Mainline Alternatives in Projected Build Year Dollars

Alternative	Construction Costs (millions)	Construction Costs Inflation (59.5\%) (millions)	Real Estate Costs (millions)	Utility Costs (millions)	Real Estate Utility Costs (millions)	Project Development Costs	Estimated Costs (millions)
Hybrid Alternative CD	$\$ 1,261.7$	$\$ 750.7$	$\$ 18.0$	$\$ 39.4$	$\$ 1.0$	$\$ 210.4$	$\$ 2,281.2$
Alternative E	$\$ 1,431.6$	$\$ 851.8$	$\$ 15.4$	$\$ 39.4$	$\$ 1.0$	$\$ 236.3$	$\$ 2,575.5$

PRBMAnsocs

Pêaniscowshorf

PPR BARAsock

P- PAASONSERHOF

VALUE ANALYSIS AND CONCLUSIONS

INTRODUCTION

This section describes the value analysis (VA) procedure used during the VE workshop on the Brent Spence Bridge Replacement/Rehabilitation Project facilitated by Lewis \& Zimmerman Associates, Inc., for ODOT and KYTC. The workshop was conducted August 24-26, 2009 at the Kentucky Transportation Cabinet, District 6 Office in Fort Mitchell, Kentucky. The project team provided the drawings and cost estimates for the workshop.

A systematic approach was used in the VE study, which is divided into three parts: (1) Preparation Effort, (2) Workshop Effort, and (3) Post-Workshop Effort. A task flow diagram outlining each of the procedures included in the VE study is attached for reference.

Following this description of the procedure, separate narratives and supporting documentation identify the following:

- VE workshop agenda
- VE workshop participants
- Economic data
- Cost model
- Function analysis
- Creative ideas and evaluations

PREPARATION EFFORT

Preparation for the workshop consisted of scheduling workshop participants and tasks and providing necessary project documents for team members to review before attending the workshop. The study documents listed below and available on the project website (http://www.brentspencebridgecorridor.com/studydocuments.html) were used as the basis for generating VE alternatives and for determining the cost implications of the selected VE alternatives:

- Brent Spence Bridge Conceptual Alternatives Study, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated April 2009;
- Brent Spence Bridge Conceptual Alternatives C, D, and E with Typical Sections, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated April 2009;
- Brent Spence Bridge Replacement/Rehabilitation Project Advisory Committee Meeting Minutes \#5, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated February 25, 2008;
- Brent Spence Bridge MOT/Constructability Report, Stages 1-5, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff;
- Brent Spence Bridge Potential Right-of-Way Impacts Drawings, Alternatives C, D, and E, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff;
- Brent Spence Bridge Potential Utilities Impacts Drawings, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff;

Preparation Effort

Coordination Project	Prepare for Workshop	Construct Cost Models	L.CC Model
Verify Schedule Suggest Format for Designer Presentation Outline Project Responsibilities Outine Needed Background Data Define Project Value Objectives Identify Project Constraints	Collect Project Data Distribute Data to Team Members Team Members Become Familiar with Project	Construct Cost Models Construct Graphic Function Analysis Outline High Cost Areas	Roadway Bridges MOT Energy User Impact

\section*{Workshop Effort
 | Information Phase | Function Identification and Analysis Phase | Speculation Phase | Evaluation Phase | Development Phase | | Presentation Phase |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Introduction by VETL
 Project Description and Presentation by Designer
 Outline Owner Requirements Review Project Data Visit Project Site (Alt.) | $T \begin{aligned} & \text { Analyze Project Costs and } \\ & \text { Energy Usage } \\ & \text { Perform Function Analysis } \\ & \text { and FAST Diagram } \\ & \text { Identify High Cost and } \\ & \text { Energy Areas } \\ & \text { Calculate CostWorth Ratios } \\ & \text { Identify Paradigms } \end{aligned}$ | | Eliminate Impractical Ideas Rank Ideas with Advantages/ Disadvantages Evaluate Alternatives (Include Non-Economic considerations: Safety, Reliability, Environment, Aesthetics, O\&M, etc.) Select Best Ideas for Implementation | $\rightarrow \|$Develop Proposed
 Alternatives
 Prepare Alternative Design
 Sketches
 Estimate Costs
 Perform Life Cycle
 Comparison
 - Initial Cost
 - Redesign Cost
 - O\&M Cost
 - LCC Cost | | Summarize Findings
 Present VE Ideas to Ownert User/Designer
 Oral Presentation |

Post-Workshop Effort

VE Study Report	Implementation Phase	Final Acceptance
Develop implementation VE Report Designer Prepares Responses to VE Report Owner Evaluates Recommendations	Participate in Implementation Meeting with Owner/User/ Designer/ VE Team, as needed Prepare Final VE Report	Redesign by Designer

- Brent Spence Bridge Phase I History/Architectural Survey - Ohio, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated June 2007;
- Brent Spence Bridge Phase I History/Architectural Survey - Kentucky, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated June 2007;
- Brent Spence Bridge Travel Lane Evaluation Study, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated April 2007;
- Alternative C and D (Cost) Estimate BSB Sections 1-5, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated 11/05/08;
- Alternative E (Cost) Estimate BSB Sections 1-5, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated 11/05/08;
- Brent Spence Bridge Travel Lane Evaluation Study, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated April 2007;
- Brent Spence Bridge Kentucky Conceptual Stage Relocation Report, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated February 2007;
- Brent Spence Bridge Planning Study Report, ODOT PID 75119, KYTC Project Item No. 617, prepared by Parsons Brinckerhoff, dated September 2006;
- Brent Spence Bridge Purpose and Need Report, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated May 2006;
- Brent Spence Bridge Existing and Future Conditions Report, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated February 2006;
- Brent Spence Bridge Red Flag Summary, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated December 2005; and
- Brent Spence Bridge Public Involvement Plan, ODOT PID 75119, KYTC Project Item No. 617, prepared by Parsons Brinckerhoff, dated October 2005.

Information relating to the project's purpose and need, owner concerns, project stakeholder concerns, design criteria, project constraints, funding sources and availability, regulatory agency approval requirements, and the project's schedule and costs is very important as it provides the VE team with insight about how the project has progressed to its current state.

To prepare for this exercise, the VE team studied the study documents listed above provided by the project team. The VE Team Leader also prepared basic cost models using the Alternative C and D and Alternative E(Cost) Estimates BSB Sections 1-5, prepared by Parsons Brinckerhoff, dated 11/05/08 to distribute the total project cost among the various deliverables. The VE team used the cost models to help identify higher cost elements and elements providing little or no value to the overall project objectives.

VALUE ENGINEERING WORKSHOP EFFORT

The VE workshop was a 3-day effort beginning with the design overview at 8:00 AM on Monday, August 24, 2009 and concluding with the VE Presentation at 2:00 PM on Wednesday, August 26, 2009. During the workshop, the VE Job Plan was followed in compliance with Federal Highway Administration guidelines for conducting a VE study. The Job Plan guided the search for alternatives to mitigate or eliminate high-cost drivers, secondary functions providing little or no value, and potential project issues or risks. Alternatives to specifically address the project team concerns and enhance value by reducing costs, improving construction schedule, and delivering required functional objectives were also considered. The Job Plan includes six phases:

- Information Phase
- Function Identification and Analysis Phase
- Creativity Phase
- Evaluation Phase
- Development Phase
- Presentation Phase

Information Phase

At the beginning of the study, the decisions that have influenced the project's design have to be reviewed and understood. For this reason, the workshop began with a detailed discussion and review of the project documents including an overview by the project team. The overview highlighted the information provided in the documentation reviewed by the VE team before the workshop and expanded on it to include a history of the project's development and any underlying influences that caused the design to develop to its current state. During this presentation, VE team members were given the opportunity to ask questions and obtain clarification about the information provided.

Function Identification and Analysis Phase

Having gained some information on the project, the VE team proceeded to define the functions provided by the project, identifying the costs to provide these functions, and determining whether the value provided by the functions has been optimized. Function analysis is a means of evaluating a project to see if the expenditures actually perform the requirements of the project or if there are disproportionate amounts of money spent on support functions. Elements performing support functions add cost to the project but have a relatively low worth to the basic function.

Function is defined as the intended use of a physical or process element. The team attempted to identify functions in the simplest manner using measurable noun/verb word combinations. To accomplish this, the team first looked at the project in its entirety and randomly listed its functions, which were recorded on Random Function Analysis Worksheets (provided in this section). Then the individual functions of the major components of the project depicted on the cost model were identified.

After identifying the functions, the team classified the functions according to the following:

Abbreviation		Type of Function
HO	Higher Order	The primary reason the project is being considered or project goal. A function the must occur for the project to meet its higher order functions. A function that occurs because of the concept or process selected and may or may not be necessary.
B	Basic	Secondary
RS	Required SecondaryA secondary function that may not be necessary to perform the basic function but must be included to satisfy other requirements or the project cannot proceed.	
G	Goal	Secondary goal of the project.
O Objective	Criteria to be met. Lower Order	A function that serves as a project input.

Higher order and basic functions provide value, while secondary functions tend to reduce value. The goal of the next job phase is to reduce the impact of secondary functions and thereby enhance project value.

The VE team used the cost model previously prepared to seek out the areas where most of the project funds are being applied. Because of the magnitude of these high-cost elements or functions, they also became initial targets for value enhancement.

Overall, these exercises stimulated the VE team members to focus on apparently low value areas and initially channel their creative idea development in these places.

Creativity Phase

This phase involved the creation and listing of ideas. The VE Team began by identifying the highest cost project elements with a high absolute cost compared to other elements in the project, and secondary functions providing little or no value. Then, using the classic brainstorming technique, the VE team began to generate as many ideas as possible to provide the necessary functions at a lower total life cycle cost, or to improve the quality of the project. Innovative ideas for reducing costs and delivering required functional objectives were encouraged. At this stage of the process, the VE team was looking for a large quantity of ideas and free association of ideas. A Creative Idea Listing worksheet was generated and organized by the project element being addressed.

The project team may wish to review these creative lists since they may contain ideas that were not pursued by the VE team but can be further evaluated for potential use in the design.

Evaluation Phase

Since the goal of the Creativity Phase was to conceive as many ideas as possible without regard for technical merit or applicability to the project goals, the Evaluation Phase focused on identifying those ideas that do respond to the project value objectives and are worthy of additional research and development before being presented to the owner. The selection process consisted of the VE team evaluating the ideas originated during the Creativity Phase. The following criteria were identified and used as a basis during the evaluation of each idea.

- No lane shall be over capacity
- No lane shall have substantial unused capacity
- No lane shall have more than two destinations
- No lane shall have more than one merge, diverge, or weave as a result of a local entrance or exit
- Lane endings shall end on the right of through lanes to avoid weaves
- Lane beginnings shall begin on the right of through lanes to avoid weaves
- All lanes could operate as separate, independent roadways relevant to other local roadways
- The new design shall meet FHWA noise abatement criteria (NAC) as outlined in 23 (CFR), Part 772
- The new design shall be developed in accordance with the geometric design criteria requirements of both KYTC and ODOT (See Conceptual Alternatives Study Table 4, pages 33-36)

The VE team rated each idea by consensus according to the following approach. A scale of 1 to 5 was used, with 5 or 4 indicating an idea with the greatest potential to be technically sound and provide cost
savings or improvements in other areas of the project with minimal risk, 3 indicating an idea that provides marginal value but could be used if the project was having budget problems, 2 indicating an idea with a major technical flaw, and 1 indicating an idea that does not respond to project requirements. Generally, ideas rated 4 and 5 are pursued in the next phase and presented to the owner during the Presentation Phase.

The team also used the designation "DS" to indicate a design suggestion, which is an idea that may not have specific quantifiable cost savings but may reduce project risk, improve constructability, help to minimize claims, enhance operability, ease maintenance, reduce schedule time, or enhance project value in other ways. Design suggestions could also increase a project's cost but provide value in areas not currently addressed. These are also developed in the next phase of the VE process.

Development Phase

In this phase, each highly rated idea was expanded into a workable solution designated as a VE alternative. The development consisted of describing the current design and the alternative solution, describing the advantages and disadvantages of the proposed alternative solution, and writing a brief narrative to compare the original design to the proposed change and provide a rationale for implementing the idea into the design. Sketches and design calculations, where appropriate, were also prepared in this part of the study. The VE alternatives are included in Section Two of this report.

Presentation Phase

The presentation was held at 2:00 PM on Wednesday, August 26, 2009. The goal of the presentation was to provide the attendees with an overview of the suggestions for value enhancement resulting from the VE study and afford them the opportunity to ask questions to clarify specific aspects of the alternatives presented.

POST-WORKSHOP EFFORT

The post-workshop portion of the VE study consisted of the preparation of this VE Study Report. Members of the project team will analyze each alternative and prepare a short response, recommending incorporation of the alternative into the project, offering modifications before implementation, or presenting reasons for rejection. LZA is available at your convenience as you review the alternatives. Please do not hesitate to call on us for clarification or further information as you consider an implementation approach.

VALUE ENGINEERING WORKSHOP AGENDA

Lewis \& Zimmerman Associates, Inc. will conduct a four-day value engineering (VE) workshop August 2426, 2009 for the Brent Spence Bridge Replacement/Rehabilitation Project (ODOT HAM-71/75-0.00/0.22 PID 75119, KYTC Project Item No. 6-17).

The VE workshop will be conducted at:

Kentucky Transportation Cabinet
District 6 Office
421 Buttermilk Pike
Ft. Mitchell, Kentucky 41017

Alfred B. Craig and Duane Phelps from Parsons Brinckerhoff will share a detailed presentation of the project at the beginning of the VE workshop and be available by telephone during the workshop to answer any questions.

The following persons shall be in attendance as VE Team Members:

ODOT Project Manager	Stefan Spinosa, District 8 Production
KYTC Project Manager	John Eckler, District 6 Highway Design
KYTC Project Manager	Rob Hans, District 6 Chief Engineer
ODOT Highway Design	John Otis, District 8 Production
ODOT Maintenance of Traffic	Walter Bernau, District 8 Construction
ODOT Maintenance of Traffic	Reynaldo Stargell C. O. Traffic Engineering (1st/4th day)
ODOT Traffic Control	Jay Hamilton, District 8 Planning/Programming
KYTC Structures	J.C. Pyles, Structural Design Office
ODOT Structures	Chris Howard, District 8 Production
ODOT Structures	Jeff Crace, C.O. Structural Engineering (1st/4th day)
KYTC Geotech	Darrin Beckett, C.O. Division of Materials
ODOT Geotech	Joe Smithson, District 8 Production
KYTC Construction	Kevin Rust, District 6 Construction
KYTC Construction	Nasby Stroop, C.O. Construction
ODOT Construction	Joe Bassil, District 8 Construction
ODOT Environmental	Keith Smith, District 8 Planning/Programming
Real Estate - TBA	
ODOT Program Manager	Scott Phinney, C.O. Systems Planning \& Prog. Mgmt. (on call)
ODOT Estimating	C.O. Office of Estimating (on call)
Ohio FHWA	Mark Vonder Embse, Transportation Area Engr. \& VE Coordinator
Kentucky FHWA	Bernadette DuPont
Kentucky FHWA	Scott Wolf
ODOT VE Coordinator	Jeanne Braxton, C.O. Office of Production (1st/4th day)
KYTC VE Coordinator	Siamak Shafaghi (1st day)
VE Facilitator	Steve Havens, P.E., C.V.S., Lewis \& Zimmerman Associates
Design Group - Parsons Brinckerhoff	Alfred B. Craig (Project Manager)
	Duane Phelps (Design Lead)

AGENDA

Monday, August 24, 2009

7:45am-8:00 am
VE Team Informal Gathering
(VE Team)
VE team gathers for informal introductions
VE team prepare questions for Parsons Brinckerhoff
8:00 am-8:10 am Welcome, Introduction and Objectives
(All Participants)
Welcome: Opening Remarks and Introduction of Participants
Overview of the VE Process, Workshop Organization and Agenda
Review VE Workshop Objectives and Goals
8:10 am - 10:30 am Design Team Detailed Presentation
(All Participants)
Overview, Scope, and Project Requirements
Key Design Issues for all Disciplines
Development Plan Review and Updated Opinion of Probable Project Cost
Design Team fields VE Team questions
10:30 am - 12:00 pm Function Analysis Phase
(VE Team)
Identify Project Constraints and Key Issues
Identify basic and secondary functions
Analyze cost model(s) and worth assignments
Identify and Quantify Project Risks
12:00 pm-1:00 pm Lunch
1:00 pm-4:15 pm Creative Phase
$4: 15 \mathrm{pm}-4: 30 \mathrm{pm}$
Daily Wrap-up Session
(VE Team)
(VE Team)

Tuesday, August 25, 2009

8:00 am - 10:00 am
Complete Creative Phase
(VE Team)
Brainstorm to generate ideas through free association. Defer judgment.
10:00 am - 12:00 pm
Evaluation Phase
(VE Team)
Establish the criteria for evaluation and rate each idea on a scale of 1 to 5 , identifying the "best" ideas for development. Assign ideas rated 4 or higher to team members for development.

12:00 pm-1:00 pm Lunch

The VE team develops creative ideas into value engineering alternatives with sketches, calculations and written justifications. Initial and life-cycle cost estimates comparing baseline and proposed designs will be prepared

4:15 pm-4:30 pm Daily Wrap-up Session
(VE Team)

Wednesday, August 26, 2009

8:00 am - 12:00 pm
Development Phase (continued)
(VE Team)
The VE team continues developing creative ideas into value engineering alternatives with sketches, calculations and written justifications. Initial and life-cycle cost estimates comparing baseline and proposed designs will be prepared.

12:00 pm-1:00 pm Lunch
1:00 pm - 2:00 pm
Complete Development Phase
(VE Team)
The VE team summarizes the findings into the Summary of Potential Savings and prepares for the outbriefing presentation.

2:00 pm - 3:00 pm
Presentation Phase
(All Participants)
The VE team presents the value engineering alternatives to the design team and the ODOT representatives. A draft copy of the Summary of Potential Savings will be distributed.

3:00 pm-3:30 pm Wrap-up/Adjourn
(VE Team)

OUTLINE FOR VE TEAM PRESENTATION

The design is influenced by outside input from many sources. In order to perform its work most efficiently, the value engineering team needs to understand the factors that have influenced the RFP development. The object is to avoid duplication of efforts and to aid the team in becoming familiar with the project.

To achieve this objective, the Project Team is asked to give a brief overview at the beginning of the VE workshop session. To assist the Project Team, we have outlined the information that, as a minimum, should be addressed:

- Scope of the Designer's effort
- Existing site conditions
- Design concepts for project (including alignment, right-of-way, maintenance of traffic, environmental mitigation, erosion and sedimentation control, structures, etc).
- Constraints
- Summary of cost estimate
- Construction phasing
- Pertinent information from public participation
- Issues/Concerns/Risks

VALUE ENGINEERING WORKSHOP PARTICIPANTS

The VE team was organized to provide specific expertise in the unique project elements involved with the Brent Spence Bridge Replacement/Rehabilitation Project. The multidisciplinary team comprised professionals with highway design, geometrics, structural engineering, traffic control, construction, transportation engineering, and cost estimating experience and a working knowledge of VE procedures. The following is a list of the VE team members:

Participant	Specialization	
Stefan Spinosa	Highway Design	
John Eckliation	ODOT District \#8 Project Manager	
Rob Hans	Highway Design	
John Otis	Kighway Design	
KYTC District \#6 Project Manager		
Walter Bernau	Highway Design	ODOT District \#6 Chief Engineer Production
Reynaldo Stargell	MOT	ODrion/MOT
Jay Hamilton	Traffic	ODOT District \#8 Construction
J.C. Pyles	Structures	ODOT C.O. Traffic Engineering
Chris Howard	Structures	ODOT District \#8 Planning \& Programming
Jeff Crace	Structures	KYTC Structural Design Office
Darrin Beckett	Geotechnical	ODOT District \#8 Production
Joe Smithson	Geotechnical	ODOT C.O. Structural Engineering
Kevin Rust	Construction	KYTC C.O. Division of Materials
Nasby Stroop	Construction	ODOT District \#8 Production
Keith Smith	Environmental	KYTC District \#6 Construction
Bernadette DuPont	FHWA	ODOT District \#8 Planning and Programming
Scott Wolf	FHWA	Kentucky FHWA
Siamak Shafaghi	VE Coordinator	Kentucky FHWA
Jeanne Braxton	VE Coordinator	KYTC C.O. Production
Stephen Havens, CVS	VE Team Leader	ODOT C.O. Office of Production

DESIGNER'S PRESENTATION

An overview of the project was presented at 8:00 AM on August 24, 2009 by the design team from Parsons Brinckerhoff. The purpose of this design overview, in addition to being an integral part of the Information Phase of the VE study, was to bring the VE team "up to speed" regarding the overall project specifics. Additionally, the overview afforded the project team the opportunity to highlight in greater detail those areas of the project requiring additional or special attention. An attendance list for the design presentation is attached.

VALUE ENGINEERING TEAM'S PRESENTATION

The VE Team's presentation was held at 2:00 PM on August 26, 2009. The purpose of the meeting was to provide the attendees with an overview of the suggestions for value enhancement resulting from the VE study and afford them the opportunity to ask questions to clarify specific aspects of the alternatives
presented. Copies of the Draft Summary of Value Engineering Alternatives were provided to the attendees. An attendance list for the meeting is attached.

DESIGNER'S PRESENTATION
MEETING PARTICIPANTS

MEETING PARTICIPANTS

DESIGNER'S PRESENTATION
MEETING PARTICIPANTS

PROJECT: HAM-71/75-0.00/0.22, PID 75119 Ohio Department of Transportation PROJECT ITEM NO. 6-17 Kentucky Transportation Cabinet\quad DATE: AUGUST 24, 2009			
NAME \& E-MAIL (please print) ORGANIZATION/TITLE			PHONE/FAX
$\begin{array}{r} \text { Ya } \\ \text { em darri } \end{array}$	$\begin{aligned} & \text { in Seckett } \\ & \text { Decketta ky.e } \end{aligned}$	$\begin{aligned} & \text { KiTc Geotech Branch } \\ & \text { Transportiotion Eng. Specintist } \end{aligned}$	$\begin{aligned} & \text { ph } 502-564-2374 \\ & \text { mob } \\ & \text { fx } 502-564-4839 \end{aligned}$
Rob em Rober	HANS Hanscu Ky. Gov	Kyte D.E Chist Distract Enyinear	$\begin{aligned} & \mathrm{ph} 85934 \cdot 2707 \times 256 \\ & \mathrm{mob} 559360 \cdot 1156 \\ & \mathrm{fx} 55934!366 i \end{aligned}$
$\begin{aligned} & \text { SIAM } \\ & \text { Siama } \end{aligned}$	$\begin{aligned} & \text { SHAFAGHI } \\ & \text { - Shafaghig Ky. } \end{aligned}$	$\begin{aligned} & \text { KYTC } \\ & \text { CENTRAL OFFICE } \end{aligned}$	$\begin{aligned} & \text { ph }(502) 564-3280 \\ & \text { mob } \\ & f \times(502) 564-3324 \end{aligned}$
$\begin{gathered} J N y \\ e m / a y, h a \end{gathered}$	M/LTON itconedotistate bnes	ONOI 18 planNTNG	$\begin{aligned} & \text { ph373 } 933 \quad 654 \\ & \text { mob } \\ & \mathrm{f} 5.53932 .936 \mathrm{~K} \end{aligned}$
em			ph mob fx
em			ph mob fx
em			ph mob fx
em			ph mob fx
em			ph mob fx
em			ph mob fx

PROJECT: HAM-71/75-0.00/0.22, PID 75 Ohio Department of Transportat PROJECT TTEM NO. 6-17 Kentucky Transportation Cabine	DATE: AUGUST 26, 2009	
NAME - E:MAIL (please print)	ORGANIZATION: TITLE	PHONE:
Dane Phezps em cratig e PBWORLD.com	$P B$	$\begin{aligned} & \mathrm{ph} 513-639-2138 \\ & \text { mob } \\ & \mathrm{fx} \end{aligned}$
$\begin{aligned} & \text { FRED CRAIG } \\ & \text { em CRAIS@PBWORLD.com } \end{aligned}$	$P \Gamma$	```ph 513-639-2(2) mob fx```
SGEPHEN HAUENS emshavens@/za.com	$\begin{aligned} & \angle Z A \\ & V E \text { TGAN LGADGR } \end{aligned}$	ph $\begin{aligned} & \mathrm{ph} \\ & \text { mob } 608-438-8227 \\ & \mathrm{fx} \end{aligned}$
em		ph mob fx
em		ph mob fX
em		ph mob fx
em		ph mob fx
em		ph mob fx
em		ph mob fX
em		ph mob fx

ECONOMIC DATA

The comparisons of life cycle costs between the VE alternatives and the current design solutions were performed on the basis of discounted present worth. To accomplish this, the VE team developed economic criteria to use in its calculations based on information gathered from the Alternative C and D, and Alternative E (Cost) Estimates BSB Sections 1-5, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated 11/05/08. The following parameters were used when calculating discounted present worth:

Year of Analysis:	2008
Construction Start Date:	2015
Construction Mid-Point:	June 2017
Construction Completion:	2020
Construction Duration:	5 seasons
Contingency (Inflation Cost Percentage):	59.5%

The VE Team used a 59.5% markup as the baseline when preparing VE alternative cost worksheets based upon the Brent Spence Bridge Conceptual Alternatives Study Section 6.4.3.

COST MODEL

The VE team leader prepared Cost Histograms or Pareto charts for the project that follows this page. The Cost Histograms display the major construction elements in descending order of magnitude identified in Alternative C and D, and Alternative E (Cost) Estimate BSB Sections 1-5, ODOT PID 75119, KYTC Project Item No. 6-17, prepared by Parsons Brinckerhoff, dated 11/05/08.

From the Alternative C and D cost models it can be seen that approximately 97.5% of the $\$ 2.28$ billion estimated construction cost is represented by the following project elements:

- Structures
- Roadway
- Design Engineering
- General Conditions
- Pavement
- Maintenance of Traffic
- Noise Barrier
- Retaining Walls
38.85\%
23.20\%
18.92\%
5.39\%
3.98\%
3.02\%
2.13\%
2.06\%

From the Alternative E cost models it can be seen that approximately 99.1% of the $\$ 2.58$ billion estimated construction cost is represented by the following project elements:

- Structures
- Roadway
- Design Contingency
- General Conditions
- Pavement
- Maintenance of Traffic
- Retaining Walls 2.48\%
- Noise Barrier 2.01\%
- Drainage 1.31%

This cost model information was used to help prioritize the areas of focus during the creative phase of the workshop.

COST HISTOGRAM

FUNCTION ANALYSIS

A random function analysis of the Brent Spence Bridge Replacement/Rehabilitation Project was performed to (1) understand the project purpose and need, (2) define the requirements for each project element, (3) ensure a complete and thorough understanding by the VE team of the basic functions needed to attain the given project purpose and need, (4) identify other goals, and (5) identify secondary functions that should be addressed by the VE team. The Random Function Analysis worksheet completed by the team for the project in its entirety and the various elements follow.

The key opportunity areas for potential value engineering betterments and cost avoidance established during the function analysis session includes the following:

- Maintenance of Traffic
- Reroute Traffic
- Identify Contractor Lay-Down Area
- Roadway
- Adjust Roadway Alignment
- Reduce Right-of-Way
- Reduce Excavation Requirements
- Protect Slope
- Pavement
- Improve Emergency Response Vehicle Access
- Minimize Impacts to Parks/Historic Areas
- Improve Access to Cincinnati/Covington
- Increase Utilization of Clay Wade Bailey Bridge
- Structures
- Use Tie-Back Walls
- Mitigate Willow Run Sewer Structural Impacts
- Reduce New Bridge Width

RANDOM FUNCTION ANALYSIS

PROJECT: \quad H	HAM-71/75-0.00/0.22, PID 75119 SHEET NO.: 2 of 3 Ohio Department of Transportation Project Item No. 6-17 Kentucky Transportation Cabinet					
DESCRIPTION				FUNCTION		
				VERB	NOUN	KIND
STRUCTURES				Separate	Grade	RS
				Span	Riverway	B
				Span	Railroad	B
				Span	Utilities	B
				Span	Historic Sites	RS
				Access	Community	HO
				Connect	Points	B
				Convey	Traffic	B
				Retain	Soil	RS
				Construct	Facility	RS
				Rehabilitate	Existing Facility	G
ROADWAY				Prepare	Roadway	B
				Remove	Pavement	RS
				Excavate	Soil/Rock	RS
				Excavate	Hazardous Materials	RS
				Borrow/Fill	Embankment	RS
				Install	Permanent Barriers	RS
				Treat	Sub-grade	RS
				Salvage	Existing Pavement	G
DRAINAGE				Transfer	Stormwater	B
				Control	Discharge	RS
Function defined as: Action Verb Measurable Noun			$\begin{aligned} & \mathrm{B}=\text { Basic } \\ & \mathrm{S}=\text { Secondary } \\ & \text { RS }=\text { Required Secondary } \end{aligned}$		$H O=$ Higher Order $\quad G=$ Goal LO $=$ Lower Order $\mathrm{O}=$ Objective	

CREATIVE IDEA LISTING AND EVALUATION OF IDEAS

During the Creativity Phase, numerous ideas were generated for the Brent Spence Bridge Replacement/ Rehabilitation Project using conventional brainstorming techniques. These ideas were recorded and are shown with their corresponding ranking on the attached Creative Idea Listing Worksheets. For the convenience of tracking an idea through the VA process, the ideas were grouped according to the following project elements and numbered in the order in which they were conceived. The following letter prefixes were used to identify the project elements.

PROJECT ELEMENT	PREFIX
Maintenance of Traffic	MOT
Roadway	R
Pavement	P
Structures	S

Creative Idea Evaluation

After discussing each idea, the team evaluated the ideas by consensus. This effort produced 11 ideas rated 4 or 5 to research and develop into VE alternatives and 10 ideas to develop as design suggestions to be included in the Section Two of the report. Ideas that were not developed further may have been combined with another related idea or discarded as a result of additional research indicating the concept as not being cost effective or technically feasible. The project team is encouraged to review the Creative Idea Listing and Evaluation worksheet since it may suggest additional ideas that can be applied to the design.

PROJECT:	HAM-71/75-0.00/0. Ohio Department of Project Item No. 6Kentucky Transporta	2, PID 75119 ransportation ion Cabinet	SHEET NO.:	1 of 3
NO.	IDEA DESCRIPTION			RATING
	MAINTENANCE OF TRAFFIC (MOT)			
MOT-1A	For all options in Kentucky, replace the shoulders on I-471 southbound with full depth pavement to support rerouting of traffic during construction.			5
MOT-1B	For all options in Kentucky, replace the shoulders on I-471 southbound with full depth pavement to support rerouting of traffic during construction.			5
MOT-1C	For all options in Kentucky, replace the shoulders on I-471 southbound with full depth pavement to support rerouting of traffic during construction.			5
MOT-2	For all options in Ohio, add alternative Newport exit signing from I-71 via US 27 to reroute traffic during construction.			DS
MOT-3	For all options, identify northbound and southbound locations for safe pull-off for overweight vehicle enforcement.			2
MOT-4	For all options, indentify acceptable contractor lay-down areas and access routes for use during constructions.			DS
MOT-5	Develop a staging strategy which would allow the new bridge to be constructed later or as a separate project, if needed.			1
MOT-6	Consider banning truck access during construction.			2
	ROADWAY (R)			
R-1	For all options, realign Section 1 near the hill to the east to reduce excavation requirements.			DS
R-2	Specify that recycled concrete pavement is acceptable for use as sub-grade stabilization in Kentucky.			DS
	PAVEMENT/RAMPS (P)			
P-1	For all options, eliminate the braid on northbound I-75 between Kyle's Lane and Dixie Highway.			3
P-2	Incorporate the Alternative E design in Kentucky with the Hybrid Alternative CD design in Ohio to provide two direct interstate access points in Covington.			3
P-3	In Alternative E, replace the $5^{\text {th }}$ Street northbound ramp to I-71 in Kentucky with an indirect ramp connection from the collector-distributor roadway to $\mathrm{I}-71$ in Ohio.			4
P-4	For all options, improve access to Covington from I-71/I-75 by changing $4^{\text {th }}$ and $5^{\text {th }}$ streets from one-way pairs to two-way traffic west of Main Street.			2
$\begin{array}{lll}\text { Rating: } & & 1 \rightarrow 2=\text { Not to be developed } \\ & \mathrm{DS}=\text { Design suggestion } & \mathrm{ABD}=\text { = Already being done }\end{array}$ $D S=$ Design suggestion $\quad A B D=$ Already being done			$5=$ Most likely to be developed	

PROJECT:	HAM-71/75-0.00/0.22, PID 75119 Ohio Department of Transportation Project Item No. 6-17 Kentucky Transportation Cabinet		SHEET NO.:	2 of 3
NO.		IDEA DESCRIPTION		RATING
	PAVEMENT/RAMPS (Continued)			
P-5	Eliminate the KY $9^{\text {th }}$ Street intersection with the collector-distributor roadway from all options.			DS
P-6	Add a ramp to access northbound I-75 from $6^{\text {th }}$ Street in Ohio in the Hybrid Alternative CD design.			2
P-7	In the Hybrid Alternative CD, identify a shorter route for emergency responses from the Fire Station at $5^{\text {th }}$ Street and Central Avenue to the Fort Washington Way Trench.			DS
P-8	In the Hybrid Alternative CD, provide a direct connection from the southbound collector-distributor to $2^{\text {nd }}$ Street in Ohio and add an additional connection to the US $42 / 3^{\text {rd }}$ Street Intersection to improve access and increase the utilization of the Clay Wade Bailey Bridge.			4
P-9	Clarify the negative impacts to I-71/I-75 interstate access in Covington by providing collector-distributor roadway access from Kentucky to northbound I-71 in Ohio.			Combine with P-3
P-10	In the Hybrid Alternative $C D$, provide access from Winchell Avenue just north of Ezzard Charles Drive to northbound I-75.			4
P-11	In the Hybrid Alternative CD , update the cost estimate to reflect the additional lane on the I-75 mainline.			DS
P-12	Use a shorter barrier design or provide short length crossovers for emergency vehicle access on one-way section areas on bridges and mainlines.			2
P-13	In Alternative E, shift the collector-distributor roadway to minimize impacts to Goebel Park and avoid relocating the radio station tower.			DS
P-14	Provide improvements to Alternative E to reduce business impacts in Ohio.			ABD
P-15	Adjust the profile of the collector-distributor roadways under Kyle's Lane to provide adequate vertical clearance under the haunched girders.			ABD
P-16	Provide an emergency crossover between Ezzard Charles Drive and $12^{\text {th }}$ Street in Kentucky.			2
	STRUCTURES (S)			
S-1	In the Hybrid Alternative CD, provide an exit from northbound I-75 to Ezzard Charles Drive similar to that shown in the Alternative E design.			DS
S-2	With all options, use tie-back walls on the west side of southbound KY I-75 and in other applicable areas in Kentucky to reduce excavation and right-of-way requirements.			DS
Rating: $\quad 1 \rightarrow 2=$ Not to be developed $\quad 3 \rightarrow 4=$ Varying degrees of development potentia $D S=$ Design suggestion $\quad A B D=$ Already being done			5 = Most likely to be developed	

CREATIVE IDEA LISTING

Appendix C Property Maps

MAP ID	PAGE \#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	TOTAL ACRES	TAKEN ACRES	TAKEN PERCENT
KY-001	1	028-10-16-014.00	PARK 75 PROPERTY OWNERS ASSN	222 GRANDVIEW DR		commercial	0	0	0	1.13	0.02	1.65\%
KY-002	1	028-10-16-011.00	PARK 75 PROPERTY OWNERS ASSN	250 GRANDVIEW DR		commercial	0	0	0	5.55	0.01	0.10\%
KY-003	2	028-30-08-001.00	FT MITCHELL POINTE COUNCIL OF	45-A MAPLE AVE W		residential	0	0	0	4.14	0.25	6.04\%
KY-004	2	028-30-08-027.01	FT MITCHELL HOTEL LLC	2100 DIXIE HWY		commercial	1,500,000	2,600,000	4,100,000	6.92	0.11	1.60\%
KY-005	2	028-30-04-005.00	BEECHWOOD INDEPENDENT SCHOOL	50 BEECHWOOD RD		commercial	1,000,000	9,126,900	10,126,900	16.64	0.10	0.59\%
KY-006	3	028-30-10-001.00	CENTRAL CHURCH OF NAZARENE	2006 PIECK LN		commercial	301,000	700,000	1,001,000	2.86	0.44	15.41\%
KY-007	3	028-30-10-001.02	CENTRAL CHURCH OF NAZARENE	2006-A PIECK LN		commercial	60,000	248,000	308,000	1.11	0.15	13.37\%
KY-008	3	028-30-12-006.00	SAM PROPERTIES	1971 PIECK LN		residential	40,000	140,000	180,000	0.27	0.27	100.00\%
KY-009	3	028-30-12-005.00	KITO PROPERTIES I LLC	1975 PIECK LN		residential	35,000	164,000	199,000	0.44	0.06	13.66\%
KY-010	3	041-20-00-151.00	JAHNKE MARK A \& SHERRY L	51 RIVARD DR		residential	30,000	150,000	180,000	0.49	0.00	0.14\%
KY-011	3	041-20-00-151.02	OSTERHAGE SUSAN K \& WILLIAM J	45 RIVARD DR		residential	30,000	150,000	180,000	0.27	0.27	100.00\%
KY-012	3	027-40-15-009.00	FORT WRIGHT PLAZA LLC	1949-2001 DIXIE HWY		commercial	1,000,000	841,500	1,841,500	9.71	0.42	4.32\%
KY-013	3	041-20-00-002.00	HOSPITALILITY ASSOS OF	1945 DIXIE HWY		commercial	415,000	1,135,000	1,550,000	1.93	1.93	100.00\%
KY-014	3	041-20-00-003.00	EMPIRE ENTERPRISES LLC	1937 DIXIE HWY		commercial	376,000	874,000	1,250,000	2.07	0.09	4.53\%
KY-015	3	041-20-00-003.01	B V GRIFFITH INC	1939 DIXIE HWY		commercial	180,000	470,000	650,000	1.03	0.01	0.71\%
KY-016	3	041-20-00-006.00	WESSELS CONST \& DEV CO INC	1885 DIXIE HWY		commercial	295,000	1,505,000	1,800,000	1.02	0.12	12.16\%
KY-017	4	041-20-00-080.01	MCKINLEY GUSTIN A \&	11 HIGHVIEW DR		vacant - res	30,000	0	30,000	1.20	0.01	0.45\%
KY-018	4	041-20-00-080.02	KALAPASEV NENAD S \&	15 HIGHVIEW DR		residential	30,000	118,000	148,000	0.58	0.58	100.00\%
KY-019	4	041-20-00-015.00	STOLZ JOHN \& MARCELLA	HIGHVIEW DR		vacant - res	500	0	500	0.08	0.08	100.00\%
KY-020	4	041-20-20-006.01	WALLACE JAMES E	1598 MARCELLA DR		residential	30,000	97,100	127,100	0.37	0.01	1.70\%
KY-021	4	041-20-20-005.03	JOHNSON MARY M	1596 MARCELLA DR		residential	30,000	110,000	140,000	0.57	0.06	10.11\%
KY-022	4	041-20-20-005.02	HORSTKAMP VERA S TRUSTEE	1594 MARCELLA DR		residential	30,000	90,000	120,000	0.35	0.07	19.17\%
KY-023	4	041-20-20-004.03	BROPHY JOHN H	1952 MARCELLA DR		residential	30,000	90,000	120,000	0.34	0.08	22.29\%
KY-024	4	041-20-00-007.00	FT WRIGHT CITY	1881 DIXIE HWY		commercial	474,000	2,126,000	2,600,000	1.36	0.37	27.18\%
KY-025	4	041-20-00-009.01	KUCHLE REALTY CO LLC	1817-25 DIXIE HWY		vacant - com	639,500	0	639,500	1.72	0.02	1.39\%
KY-026	5	041-20-01-003.01	AUTOMANAGE LLC	700 WRIGHTSUMMIT PKWY		vacant - com	1,204,500	0	1,204,500	4.50	0.25	5.53\%
KY-027	5	041-20-01-003.02	SISTERS OF NOTRE DAME OF	WRIGHTSUMMIT PKWY		vacant - com	317,000	0	317,000	1.27	0.11	8.94\%
KY-028	5	041-20-00-001.01	SISTERS OF NOTRE DAME OF	1601-A DIXIE HWY		vacant - com	143,000	0	143,000	0.68	0.26	38.46\%
KY-029	5	041-20-00-001.00	SISTERS OF NOTRE DAME OF	1601 DIXIE HWY		commercial	1,890,000	54,500,000	56,390,000	42.69	0.97	2.26\%
KY-030	5	041-40-00-005.00	OLT REAL ESTATE HOLDINGS II	505 ST JOSEPH LN		residential	60,000	215,000	275,000	0.44	0.44	100.00\%
KY-031	5	041-40-00-001.03	DICKMAN JEANNE \& DALE VINCENT	504 ST JOSEPH LN		commercial	60,000	215,000	275,000	0.59	0.14	23.69\%
KY-032	5	041-40-00-001.04	WACHS DANIEL G	502 ST JOSEPH LN		residential	70,000	232,500	302,500	0.94	0.94	100.00\%
KY-033	5	041-40-00-009.00	OLT REAL ESTATE LLC	1200-04 ELBERTA CIR		commercial	135,000	250,000	385,000	3.58	1.16	32.43\%
KY-034	5	041-20-20-004.01	TERREL SYDNEY J	1590 MARCELLA DR		residential	30,000	90,000	120,000	0.34	0.09	27.85\%
KY-035	5	041-20-20-003.01	WIGGER RALPH P \& REBECCA L	1588 MARCELLA DR		residential	30,000	90,000	120,000	0.28	0.09	32.68\%
KY-036	5	041-20-20-002.01	RALEIGH JOHNNY \& BELLE R	1586 MARCELLA DR		residential	30,000	90,000	120,000	0.18	0.02	10.50\%
KY-037	6	041-40-00-016.00	ALBERS ROBERT \& JANEY	1208 FAR HILLS DR		vacant - res	45,000	0	45,000	1.91	0.02	1.24\%
KY-038	6	041-40-00-017.00	DICKMAN ROBERT G	1132-34-35-37 CEDER RIDGE LN		residential	300,000	1,540,000	1,840,000	9.54	1.76	18.46\%
KY-039	6	041-30-00-020.01	GRAY DAVID \& HAZEL	507 SCENIC DR		residential	45,000	140,000	185,000	0.45	0.45	100.00\%
KY-040	6	041-30-00-020.02	WALL TERRANCE M JR	508 SCENIC DR		residential	100,000	200,000	300,000	0.26	0.26	100.00\%
KY-041	6	041-30-00-020.09	BEUTTEL WILLIAM C \& JANE	506 SCENIC DR		residential	60,000	105,000	165,000	0.32	0.32	100.00\%
KY-042	6	041-30-00-106.00	SANITATION DISTRICT \#1 OF	500 SCENIC DR		vacant - res	50,000	0	50,000	3.42	0.28	8.04\%
KY-043	6	041-30-00-020.03	BARRETT ROBIN	510 SCENIC DR		residential	60,000	100,000	160,000	0.28	0.28	100.00\%
KY-044	6	041-30-00-020.04	UTLEY FORREST G	512 SCENIC DR		residential	100,000	195,000	295,000	0.61	0.00	0.31\%
KY-045	7	055-11-33-005.00	SAINT ELIZABETH MEDICAL	MONROE ST		vacant - com	15,000	0	15,000	3.03	0.41	13.69\%
KY-046	7	041-33-08-005.00	RABE CLIFFORD L	609 WATKINS ST		residential	5,000	120,000	125,000	0.27	0.06	22.37\%
KY-047	7	041-33-08-004.00	RABE TAMMY O	607 WATKINS ST		residential	5,000	55,000	60,000	0.13	0.13	100.00\%
KY-048	8	040-44-09-026.01	HENSON MONA G \&	612 12TH ST W		residential	5,000	50,000	55,000	0.12	0.12	100.00\%
KY-049	8	040-44-09-026.00	EUBANKS REBECCA	610 12TH ST W		residential	5,000	70,000	75,000	0.06	0.06	100.00\%
KY-050	8	040-44-09-025.00	CUMMINGS HEIDI	608 12TH ST W		residential	5,000	87,000	92,000	0.06	0.06	100.00\%
KY-051	8	040-44-09-024.00	WHEELER SAM	606 12TH ST W		residential	5,000	29,900	34,900	0.05	0.05	100.00\%
KY-052	8	040-44-09-023.00	FROELICHER CHARLOTTE \& MARIE	604 12TH ST W		residential	5,000	50,000	55,000	0.06	0.06	100.00\%
KY-053	8	040-44-09-020.00	GREFER JEFFREY \& LORI	605 11TH ST W		residential	5,000	24,000	29,000	0.06	0.06	100.00\%
KY-054	8	040-44-09-019.00	GIER THOMAS C \& DANINE B	609 11TH ST W		residential	5,000	50,000	55,000	0.12	0.12	100.00\%
KY-055	8	040-44-08-017.01	FINAN JOSEPH L	606 11TH ST W		residential	5,000	29,000	34,000	0.05	0.05	100.00\%
KY-056	8	040-44-08-017.02	GREFER JEFF \& LORI	608 11TH ST W		residential	5,000	27,000	32,000	0.05	0.05	100.00\%

MAP ID	PAGE\#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	TOTAL ACRES	TAKEN ACRES	TAKEN PERCENT
KY-057	8	040-44-08-018.00	GREFER JEFFREY M \& LORI A	610-12 11TH ST W		residential	5,000	3,000	8,000	0.11	0.11	100.00\%
KY-065	8	040-44-06-027.00	LEWISBURG ENTERPRISES LLC	610-18 PIKE ST		commercial	150,000	0	150,000	0.31	0.31	100.00\%
KY-066	8	040-44-06-025.00	LEWISBURG ENTERPRISES LLC	620 LEWIS ST		vacant - res	10,000	0	10,000	0.12	0.12	100.00\%
KY-067	8	040-44-06-024.00	CE O ASSOCIATES	622 LEWIS ST		residential	5,000	26,500	31,500	0.11	0.01	9.09\%
KY-076	8	040-44-06-013.00	STANDARD CLUB OF COVINGTON	643 LAUREL ST		commercial	27,000	63,500	90,500	0.34	0.10	28.21\%
KY-077	8	040-44-06-012.00	STANDARD CLUB OF COVINGTON	643 LAUREL ST		commercial	17,000	3,000	20,000	0.23	0.06	24.04\%
KY-078	8	040-44-06-002.00	WILDER DARRELL \& MARY	639 9TH ST W		residential	5,000	45,000	50,000	0.11	0.11	100.00\%
KY-079	8	040-44-06-003.00	SCHULTE JOSEPH M	641-5 9TH ST W		commercial	15,000	37,500	52,500	0.17	0.17	100.00\%
KY-080	8	040-44-06-006.00	ASAP PROPERTIES LLC	906 BAKER ST		residential	5,000	44,200	49,200	0.06	0.01	12.00\%
KY-081	8	040-44-06-005.00	CHASTAIN MATTHEW	904 BAKER ST		residential	5,000	51,000	56,000	0.06	0.06	100.00\%
KY-082	8	040-44-06-004.00	JMG PROPERTIES	902 BAKER ST		residential	5,000	20,000	25,000	0.05	0.05	100.00\%
KY-083	8	040-44-05-006.00	COLE VIRGIL \& FREDA D	905 BAKER ST		residential	5,000	40,000	45,000	0.10	0.01	9.20\%
KY-084	8	040-44-05-005.00	GONIC CHARLIE SR	901 BAKER ST		residential	5,000	30,000	35,000	0.06	0.06	100.00\%
KY-085	8	040-44-05-004.00	BRINEY KEVIN S	719 9TH ST W		residential	5,000	20,000	25,000	0.09	0.01	7.67\%
KY-086	8	040-44-05-002.00	ROY MARK W	721-23 9TH ST W		residential	5,000	70,000	75,000	0.19	0.00	2.42\%
KY-087	8	040-44-03-019.00	RIESS PHILLIP J	720 9TH ST W		residential	5,000	40,000	45,000	0.12	0.00	0.50\%
KY-088	8	040-44-03-020.00	DUDLEY PROPERTIES II LLC	716 9TH ST W		residential	5,000	42,000	47,000	0.06	0.00	4.33\%
KY-089	8	040-44-03-021.00	KENNEDY JIM	714 9TH ST W		residential	5,000	35,000	40,000	0.05	0.00	5.20\%
KY-090	8	040-44-03-022.00	KENNEDY JIM	712 9TH ST W		vacant - res	4,000	0	4,000	0.05	0.01	10.40\%
KY-091	8	040-44-03-023.00	KENTUCKY FEDERAL SAVINGS \&	710 9TH ST W		residential	5,000	52,000	57,000	0.06	0.01	12.17\%
KY-092	8	040-44-03-024.00	BISHOP GEORGIA G	708 9TH ST W		residential	5,000	24,000	29,000	0.07	0.01	13.14\%
KY-093	8	040-44-03-025.00	SETTER TIMOTHY L \& MARDIS JOHN	706 9TH ST W		residential	5,000	40,000	45,000	0.05	0.01	12.40\%
KY-094	8	040-44-03-026.00	SULLIVAN LEEANN \& TOMMY	704 9TH ST W		residential	5,000	43,500	48,500	0.05	0.01	12.40\%
KY-095	8	040-44-03-027.00	STEINFORT BARBARA	702 9TH ST W		residential	5,000	40,000	45,000	0.06	0.01	10.83\%
KY-096	8	040-44-04-033.00	BIRMINGHAM TIMOTHY H	872 CRESCENT AVE		residential	6,000	39,000	45,000	0.06	0.06	100.00\%
KY-097	8	040-44-04-032.00	HUNTER CLAY	870 CRESCENT AVE		residential	4,000	12,000	16,000	0.06	0.06	100.00\%
KY-098	8	040-44-04-031.00	SCHMIDT EDNA M	868 CRESCENT AVE		residential	4,000	36,000	40,000	0.10	0.10	100.00\%
KY-099	8	040-44-04-030.00	FINAN JOSEPH \& LISA A	866 CRESCENT AVE		residential	4,000	52,000	56,000	0.07	0.07	100.00\%
KY-100	8	040-44-04-029.00	LIMLE KIMBERLY A	862 CRESCENT AVE		residential	4,000	38,000	42,000	0.10	0.10	100.00\%
KY-101	8	040-44-04-028.00	LANSKY DENISE MARY	860 CRESCENT AVE		residential	4,000	42,000	46,000	0.08	0.08	100.00\%
KY-102	8	040-44-04-027.00	FINDLEY ANN	858 CRESCENT AVE		residential	4,000	31,000	35,000	0.06	0.06	100.00\%
KY-103	8	040-44-04-026.00	MARKSBERRY JULIA M	856 CRESCENT AVE		residential	4,000	21,000	25,000	0.07	0.07	100.00\%
KY-104	8	040-44-04-025.00	WISSMANN KARLS	854 CRESCENT AVE		residential	4,000	56,000	60,000	0.05	0.02	44.00\%
KY-105	8	040-44-04-024.00	SHOLLER RICHARD A	852 CRESCENT AVE		residential	4,000	36,000	40,000	0.06	0.06	100.00\%
KY-106	8	040-44-04-023.00	Johnson Paul d \& MEDORAH KAREN	850 CRESCENT AVE		residential	4,000	31,000	35,000	0.06	0.06	100.00\%
KY-107	8	040-44-04-022.00	FINAN JOE	848 CRESCENT AVE		residential	5,000	11,500	16,500	0.05	0.05	100.00\%
KY-108		040-44-04-021.00	OLT PROPERTIES II LLC	846 CRESCENT AVE		residential	5,000	40,000	45,000	0.05	0.05	100.00\%
KY-109	8	040-44-04-020.00	HAMER JOAN \& CHRISTOPHER	844 CRESCENT AVE		residential	4,000	31,000	35,000	0.06	0.00	7.17\%
KY-110	8	040-44-04-017.00	HASENBEIN RALPH W \& ELVA	834 CRESCENT AVE		residential	4,000	31,000	35,000	0.08	0.03	34.75\%
KY-111	8	040-44-04-016.00	MCCALL ERNA	832 CRESCENT AVE		residential	4,000	36,000	40,000	0.05	0.05	100.00\%
KY-112	8	040-44-04-015.00	COVINGTON CITY OF	830 CRESCENT AVE		vacant - res	20,000	0	20,000	0.09	0.09	100.00\%
KY-113	8	040-44-04-014.00	TLC PROPERTIES INC	826 CRESCENT AVE		commercial	20,000	0	20,000	0.04	0.04	100.00\%
KY-114	8	040-44-04-013.00	COVINGTON CITY OF	826 CRESCENT AVE		commercial	10,000	0	10,000	0.09	0.09	100.00\%
KY-115	8	040-44-04-012.00	MAYHEW AMANDA E	824 CRESCENT AVE		residential	5,000	106,800	111,800	0.06	0.06	100.00\%
KY-116	8	040-44-04-011.00	RUEDEBUSCH ROBERT L	822 CRESCENT AVE		residential	10,000	83,000	93,000	0.06	0.06	100.00\%
KY-117	8	040-44-04-010.01	CLAXTON FELECIA	820 CRESCENT AVE		residential	5,000	35,000	40,000	0.06	0.06	100.00\%
KY-118	8	040-44-04-009.00	JOHNSON CHARLES M \& LILLIAN	818 CRESCENT AVE		residential	5,000	35,000	40,000	0.05	0.05	100.00\%
KY-119	8	040-44-04-008.00	HLE PROPERTIES LLC	816 CRESCENT AVE		residential	5,000	30,000	35,000	0.06	0.06	100.00\%
KY-120	8	040-44-04-007.00	JOHNSON DAVID	812 CRESCENT AVE		residential	4,000	6,900	10,900	0.11	0.11	100.00\%
KY-121	8	040-44-04-005.00	HLE PROPERTIES LLC	810 CRESCENT AVE		vacant - res	1,500	0	1,500	0.05	0.05	100.00\%
KY-122	8	040-44-04-004.00	HLE PROPERTIES LLC	808 CRESCENT AVE		residential	5,000	40,000	45,000	0.06	0.06	100.00\%
KY-123	8	040-44-04-003.00	BECKER PATRICIA M	806 CRESCENT AVE		residential	5,000	40,000	45,000	0.06	0.06	100.00\%
KY-124	8	040-44-04-002.00	RAHEMI FATNA	804 CRESCENT AVE		residential	5,000	7,000	12,000	0.06	0.06	100.00\%
KY-125	8	040-44-20-007.01	JLD MANAGEMENT LLC	540 WATKINS ST		residential	5,000	73,500	78,500	0.15	0.05	32.13\%
KY-126	8	040-44-19-013.00	COLUMBIA SUSSEX CORP	JILIANS WAY		commercial	1,000,000	3,200,000	4,200,000	4.11	0.22	5.27\%
KY-127	8	040-44-19-004.00	PIKE PRO LLC	555 PIKE ST		commercial	105,000	112,000	217,000	0.35	0.35	100.00\%

ALTERNATIVE E PROPERTY MAPS

MAP ID	PAGE \#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	TOTAL ACRES	TAKEN ACRES	TAKEN PERCENT
KY-134	8	040-44-11-001.00	OAKLAND PROPERTIES INC	902-26 WILLOW RUN		commercial	150,000	485,000	635,000	0.94	0.94	100.00\%
KY-135	8	040-44-11-002.00	FAIRHAVEN RESCUE MISSION INC	603 9TH ST W		residential	5,000	25,000	30,000	0.06	0.01	20.17\%
KY-136	8	040-44-11-003.00	FAIRHAVEN RESCUE MISSION INC	601 9TH ST W		mixed	10,000	65,000	75,000	0.05	0.01	24.20\%
KY-137	8	040-44-10-010.01	ATSINGER EDWARD G III TRUSTEE	620 9TH ST W		tower	0	0	0	0.34	0.34	100.00\%
KY-138	8	040-44-10-010.00	COVINGTON CITY OF	847 PHILADELPHIA		commercial	133,500	116,500	250,000	2.62	0.84	32.03\%
KY-140	9	040-44-03-047.00	AXUT BUILDING LLC	803-09 CRESCENT AVE		residential	50,000	0	50,000	0.22	0.01	5.18\%
KY-141	9	040-44-03-048.00	AXUT BUILDING LLC	801 CRESCENT AVE		vacant - res	10,000	0	10,000	0.07	0.04	55.43\%
KY-142	9	040-43-02-014.00	VIIIONS DEVELOPMENT GROUP LLC	731 CRESCENT AVE		residential	15,000	235,000	250,000	0.06	0.06	100.00\%
KY-143	9	040-43-02-014.03	VISIONS DEVELOPMENT GROUP LLC	729 CRESCENT AVE		residential	15,000	235,000	250,000	0.06	0.06	100.00\%
KY-144	9	040-43-02-014.02	VISIONS DEVELOPMENT GROUP LLC	727 CRESCENT AVE		residential	15,000	235,000	250,000	0.06	0.06	100.00\%
KY-145	9	040-43-02-014.01	VISIONS DEVELOPMENT GROUP LLC	725 CRESCENT AVE		residential	15,000	235,000	250,000	0.09	0.09	100.00\%
KY-146	9	040-43-02-013.00	BECKER FAMILY LTD PTN	643-723 CRESCENT AVE		vacant - res	70,000	0	70,000	2.16	1.67	77.12\%
KY-147	9	040-43-02-012.00	MANN ROBERT J \& JULIE	641 CRESCENT AVE		residential	5,000	55,000	60,000	0.05	0.05	100.00\%
KY-148	9	040-43-02-011.00	AXUT BUILDING LLC	637-39 CRESCENT AVE		vacant - res	10,000	0	10,000	0.10	0.10	100.00\%
KY-149	9	040-43-02-010.00	JOHNSON DAVID	635 CRESCENT AVE		residential	10,000	20,000	30,000	0.08	0.08	100.00\%
KY-150	9	040-43-02-009.05	AXUT BUILDING LLC	627-33 CRESCENT AVE		vacant - res	52,000	0	52,000	0.22	0.22	100.00\%
KY-151	9	040-43-03-022.00	BEZOLD CLEMENT LJR	630 CRESCENT AVE		vacant - res	1,000	0	1,000	0.06	0.06	100.00\%
KY-152	9	040-43-03-023.00	WURZELBACHER JAMIE J	628 CRESCENT AVE		vacant - res	9,000	0	9,000	0.05	0.05	100.00\%
KY-153	9	040-43-03-024.00	WURZELBACHER JAMIE J	624 CRESCENT AVE		vacant - res	4,000	0	4,000	0.06	0.06	100.00\%
KY-154	9	040-43-02-009.04	COTTON JOSEPH W \& NORMA	625 CRESCENT AVE		residential	5,000	20,000	25,000	0.05	0.05	100.00\%
KY-155	9	040-43-02-009.03	MATTINGLY KELLY S	623 CRESCENT AVE		vacant - res	5,000	0	5,000	0.05	0.05	100.00\%
KY-156	9	040-43-02-009.02	MATTINGLY KELLY S	621 CRESCENT AVE		residential	5,000	40,000	45,000	0.03	0.03	100.00\%
KY-157	9	040-43-02-009.01	MATTINGLY KELLY S	619 CRESCENT AVE		residential	5,000	40,000	45,000	0.04	0.04	100.00\%
KY-158	9	040-43-02-008.00	MURNAN ALBERT E \& PHYLIS D	615-17 CRESCENT AVE		residential	20,000	36,900	56,900	0.08	0.08	100.00\%
KY-159	9	040-43-02-007.00	HANAUER MARK R	611-13 CRESCENT AVE		residential	20,000	40,000	60,000	0.15	0.15	100.00\%
KY-160	9	040-43-02-006.00	MATTINGLY KELLY S	609 CRESCENT AVE		residential	5,000	60,000	65,000	0.05	0.05	100.00\%
KY-161	9	040-43-02-005.00	READNOUR JACK	607 CRESCENT AVE		residential	6,000	0	6,000	0.05	0.05	100.00\%
KY-162	9	040-43-02-004.00	ROBERTS CONNIE	605 CRESCENT AVE		residential	5,000	50,000	55,000	0.05	0.05	100.00\%
KY-163	9	040-43-02-003.00	WAGONER KELLY L	601-03 CRESCENT AVE		residential	5,000	94,200	99,200	0.11	0.11	100.00\%
KY-164	9	040-43-03-028.00	HUE ENTERPRISES INC	502 CRESCENT AVE		commercial	43,000	15,000	58,000	0.33	0.33	100.00\%
KY-165	9	040-43-02-002.00	HUE ENTERPRISES INC	431-529 CRESCENT AVE		commercial	320,000	569,000	889,000	0.88	0.16	18.22\%
KY-166	9	040-43-02-017.00	SCHNEIDER ARTHUR W \& DONNA S	644 WESTERN AVE		vacant - res	8,000	0	8,000	0.08	0.08	100.00\%
KY-167	9	040-43-02-018.00	SCHNEIDER ARTHUR W \& DONNA S	640 WESTERN AVE		residential	5,000	45,000	50,000	0.06	0.06	100.00\%
KY-168	9	040-43-02-019.00	MARTIN DONALD R	638 WESTERN AVE		residential	5,000	50,000	55,000	0.06	0.06	100.00\%
KY-169	9	040-43-02-020.00	THORNTON PETER \& TRULA	636 WESTERN AVE		residential	5,000	45,000	50,000	0.04	0.04	100.00\%
KY-170	9	040-43-02-021.00	MCQUEARY MICHAEL L \& DEBORAH	632-34 WESTERN AVE		residential	5,000	60,000	65,000	0.12	0.12	100.00\%
KY-171	9	040-43-02-022.00	BEDD SCENIC VIEW LLC	630 WESTERN AVE		residential	5,000	50,000	55,000	0.07	0.07	100.00\%
KY-172	9	040-43-02-023.00	MCQUEARY MICHAEL \& DEBORAH	628 WESTERN AVE		vacant - res	3,000	0	3,000	0.05	0.05	100.00\%
KY-173	9	040-43-02-024.00	MCQUEARY MICHAEL L \& DEBORAH	624 WESTERN AVE		vacant - res	2,000	0	2,000	0.04	0.04	100.00\%
KY-174	9	040-43-02-025.00	MCMURRAY THOS P	622 WESTERN AVE		residential	5,000	50,000	55,000	0.07	0.07	100.00\%
KY-175	9	040-43-02-026.00	C P LE ASSOCIATES	618-20 WESTERN AVE		residential	4,000	0	4,000	0.07	0.03	37.57\%
KY-176	9	040-43-02-027.00	NELSON JAMES A	616 WESTERN AVE		residential	10,000	75,000	85,000	0.07	0.01	7.43\%
KY-177	9	040-34-03-005.00	COVINGTON CITY OF	670 4TH ST W		commercial	850,000	200,000	1,050,000	0.73	0.73	100.00\%
KY-178	9	040-34-03-003.00	COVINGTON CITY OF	669-71 3RD ST W		commercial	1,000,000	112,000	1,112,000	0.50	0.50	100.00\%
KY-179	9	040-34-03-002.00	THIRD STREET LLC	673-75 3RD ST W		commercial	250,000	50,000	300,000	0.30	0.01	3.10\%
KY-180	9	040-34-02-001.00	RUSK HEATING \& AIR COND INC	664-66 3RD ST W		commercial	475,000	215,000	690,000	0.72	0.72	100.00\%
KY-181	9	040-34-02-012.00	COVINGTON CITY OF	687 2ND ST W		vacant - res	35,000	0	35,000	0.34	0.34	100.00\%
KY-182	9	040-34-02-011.00	COVINGTON CITY OF	689 2ND ST W		commercial	150,000	100,000	250,000	0.81	0.13	16.33\%
KY-183	10	040-34-03-008.00	COVINGTON CITY OF	610-A 2ND ST W		vacant - res	7,000	,	7,000	6.17	1.59	25.79\%
KY-184	9	040-43-05-003.00	COVINGTON CITY OF	501 PHILADELPHIA ST		recreation	500,000	650,000	1,150,000	5.64	0.00	0.07\%

MAP ID	PAGE \#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	TOTAL ACRES	TAKEN ACRES	TAKEN PERCENT
OH-001	10	013700030078	DUKE ENERGY OHIO INC	Front Street		Industrial	919000	1,041,800	1,960,800	11.04	3.74	33.89\%
OH-002	10	013700030020	DUKE ENERGY OHIO INC	646 Mehring Way		Industrial	464,200	671,100	1,135,300	4.28	0.93	21.67\%
OH-003	10	013700030059	HILLTOP CONCRETE CORP	612 Mehring Way		Industrial	92,640	3,740	96,380	0.04	0.04	100.00\%
OH-004	10	013700030060	HILLTOP CONCRETE CORP	612 Mehring Way		Industrial	0	0	0	0.05	0.03	54.95\%
OH-005	10	013700030054	HILLTOP BASIC RESOURCES	Augusta Avenue		Vacant - Ind	45,140	0	45,140	0.37	0.01	1.97\%
OH-006	10	013700030044	CORMAN ROBERT	603 W Pete Rose Way		Commercial	104,550	33,760	138,310	1.29	0.15	11.74\%
PART OF OH-006		013700030045	CORMAN ROBERT	603 W Pete Rose Way		Commercial	0	0	0	0.18	0.00	0.89
OH-008	10	013700030053	HILLTOP CONCRETE CORP	Augusta Avenue		Vacant - Ind	39,940	0	39,940	0.06	0.06	100.00\%
OH-016	12	014700050121	LONGWORTH HALL LLC	700 Pete Rose Way		Commercial	996,580	6,651,110	7,647,690	2.02	0.94	46.40\%
PART OF OH-016 PA		014700050126	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial	0		0	0.07	0.07	100.00\%
PART OF OH-016		014700050127	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial	0	0	0	0.11	0.11	100.00\%
PART OF OH-016		014700050128	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial	0	0	0	0.10	0.10	100.00\%
PART OF OH-016		014700050120	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial	0	0	0	0.48	0.23	47.85\%
PART OF OH-016		014700050124	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial	0	0	0	0.05	0.05	100.00\%
PART OF OH-016		014700050125	LONGWORTH HALL LLC	701 W PETE ROSE WAY		Commercial	0	0	0	0.62	0.04	7.21\%
PART OF OH-016		014700050119	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial	0	0	0	0.09	0.03	28.54\%
OH-024	12	014700050140	CENTRAL RAILROAD CO OF			Railroad	0	0	0	1.46	0.07	4.67\%
OH-025	12	014700050123	CENTRAL RAILROAD CO OF			Railroad	0	0	0	0.07	0.07	100.00\%
$\mathrm{OH}-026$	12	014700050051	COVINGTON \& CINCINNATI			Railroad	0	0	0	0.03	0.01	50.55\%
OH-027	12	014700050050	COVINGTON \& CINCINNATI			Railroad	0	0	0	0.01	0.00	27.40\%
OH-028	12	014700050049	KNOCK INVESTMENTS LLC	750 W THIRD ST		Industrial	217360	0	217360	0.01	0.00	9.09\%
OH-029	12	014700050149	CSX TRANSPORATION INC	500 WATER ST		Railroad	0	0	0	0.14	0.14	100.00\%
$\mathrm{OH}-030$	12	014700050148	LONGWORTH HALL LLC	53 rd Street		Vacant - Ind	4,010	0	4,010	0.03	0.03	100.00\%
$\mathrm{OH}-031$	12	014700050152	NORTON OUTDOOR ADVERTISING	62 3rd Street		Vacant - Ind	0	0	0	0.06	0.06	100.00\%
OH-032	12	014700050153	CINCINNATI CITY OF	62 3rd Street		Vacant - Ind	0	0	0	0.06	0.06	100.00\%
OH-033	12	014700050054	LONGWORTH HALL LLC	53 rd Street		Vacant - Ind	10,990	0	10,990	0.06	0.06	100.00\%
OH-034	12	014700070212	CALDWELL REALTY CO	690 3rd Street		Industrial	459000	651,900	1,110,900	0.27	0.12	45.27\%
OH-035	12	014700070225	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	1,103,700	4,096,300	5,200,000	1.203	0.64	53.62\%
PART OF OH-035		014700070226	TOWNVIEW 56TH STREET LLC	359 Gest St		Commercial	0	\bigcirc	0	0.02	0.02	100.00\%
PART OF OH-035		014700070214	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	0	\square	- 0	0.03	0.03	100.00\%
PART OF OH-035		014700070215	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	0	- 0	0	0.03	0.03	100.00\%
PART OF OH-035		014700070216	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	0	0	0	0.03	0.03	100.00\%
PART OF OH-035		014700070177	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	0	0	- 0	0.18	0.18	100.00\%
PART OF OH-035		014700070161	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	0	\square	0	0.10	0.05	53.63\%
PART OF OH-035		014700070715	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	0	\square	0	0.08	0.01	12.53\%
PART OF OH-035		014700070256	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	0	0	0	0.27	0.01	2.39\%
PART OF OH-035		014700070258	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	0	0	0	0.56	0.01	2.19\%
OH-045	12	014700070268	DUKE ENERGY OHIO INC	Gest Street		Commercial	1,058,700	3,083,900	4,142,600	6.50	0.11	1.75\%
OH-046	12	014700070267	CALDWELL REALTY CO	500 Gest Street		Industrial	909,300	1,401,220	2,310,520	2.33	0.21	9.06\%
OH-047	12	014700040199	CALDWELL REALTY CO	P O BOX 28606		Industrial	0	0	0	0.88	0.24	26.69\%
OH-048	12	014600050180	CALDWELL REALTY CO	P O BOX 28606		Industrial	0	0	0	0.42	0.07	15.42\%
OH-049	12	014600050025	CINCINNATI CITY OF	500 Gest Street			0	0	0	1.09	0.06	5.90\%
OH-050	12	013600030241	TAPPAN PROPERTIES Fox 19 Station	635 Seventh Street		Commercial	766,800	2,933,200	3,700,000	2.56	0.09	3.61\%
OH-051	12	014500030229	CITY OF CINCINNATI	801 PLUM ST		Row	0	0	0	0.07	0.05	70.97\%
OH-052	12	014500030230	CITY OF CINCINNATI	801 PLUM ST		Row	0	0	0	0.07	0.05	71.90\%
OH-053	12	014500030231	CITY OF CINCINNATI	801 PLUM ST		ROW	0	0	0	0.04	0.03	72.47\%
OH-054	12	014500030232	CITY OF CINCINNATI	801 PLUM ST		Row	0	0	0	0.04	0.03	72.65\%
$\mathrm{OH}-055$	12	014500030247	UNION BAPTIST CHURCH	619 CENTRAL AVE		Residential	1,782,530	2,556,530	4,339,060	1.33	0.02	1.69\%
OH-056	12	014500030246	STARGEL ROGENA TR	405 W SEVENTH ST		Commercial	1,001,400	902,300	1,903,700	0.74	0.06	8.61\%
OH-057	12	014600060115	AUTOMATIC DATA PROCESSING	5007 th Street		Commercial	4,339,600	1,910,400	6,250,000	6.76	0.64	9.50\%
OH-059	13	013600030060	CINCINNATI CITY OF	705 Cutter		Row	0	0	0	0.06	0.00	2.45\%
OH-060	13	013600020211	AAIG OF CINCINNATI LLC	800 W 8TH ST		Commercial	821300	1,975,700	2,797,000	1.17	0.03	2.32\%
OH-061	13	013600010238	LINN STREET INVESTMENT LL	801 Linn Street		Commercial	873,000	812,530	1,685,530	1.97	0.11	5.35\%
OH-062	13	013900030242	FULLER PROPERTIES LLC	900 W EIGHTH ST		Commercial	1,020,770	1,196,970	2,217,740	7.45	0.11	1.53\%
OH-063	13	013600020249	CINCINNATI CITY OF	904 Cutter Street		Transportation	108,980	36,260	145,240	1.13	0.07	6.61\%
OH-064	13	013600020056	CINCINNATI CITY OF	706 Ninth Street		Municipal	5,000	0	5,000	5.23	0.21	4.00\%
PART OF OH-064		013600020055	CINCINNATI CITY OF	706 Ninth Street		Municipal						
PART OF OH-064		013600020054	CINCINNATI CITY OF	710 9th Street		Municipal						

MAP ID	PAGE \#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	TOTAL ACRES	TAKEN ACRES	TAKEN PERCENT
PART O	OH-064	013600020053	CINCINNATI CITY OF	7109 9th Street		Municipal						
PART O	OH-064	013600020214	CINCINNATI CITY OF	909 Cutter Street		Municipal						
PART O	OH-064	013600020023	CINCINNATI CITY OF	717 Richmond Street		Municipal						
PART OF	OH-064	013600020022	CINCINNATI CITY OF	719 Richmond Street		Municipal						
PART O	OH-064	013600020021	CINCINNATI CITY OF	721 Richmond Street		Municipal						
PART O	OH-064	013600020020	CINCINNATI CITY OF	723 Richmond Street		Municipal						
PART O	OH-064	013600020019	CINCINNATI CITY OF	723 Richmond Street		Municipal						
PART O	$\mathrm{OH}-064$	013600020018	CINCINNATI CITY OF	723 Richmond Street		Municipal						
PART O	OH-064	013600020017	CINCINNATI CITY OF	731 Richmond Street		Municipal						
PART O	$\mathrm{OH}-064$	013600020016	CINCINNATI CITY OF	733 Richmond Street		Municipal						
PART O	$\mathrm{OH}-064$	013600020015	CINCINNATI CITY OF	735 Richmond Street		Municipal						
PART O	OH-064	013600020014	CINCINNATI CITY OF	737 Richmond Street		Municipal						
PART O	OH-064	013600020013	CINCINNATI CITY OF	739 Richmond Street		Municipal						
PART O	$\mathrm{OH}-064$	013600020012	CINCINNATI CITY OF	741 Richmond Street		Municipal						
PART O	OH-064	013600020011	CINCINNATI CITY OF	743 Richmond Street		Municipal						
PART O	OH-064	013600020010	CINCINNATI CITY OF	745 Richmond Street		Municipal						
PART O	OH-064	013600020009	CINCINNATI CITY OF	747 Richmond Street		Municipal						
PART O	$\mathrm{OH}-064$	013600020008	CINCINNATI CITY OF	749 Richmond Street		Municipal						
PART O	$\mathrm{OH}-064$	013400060067	CINCINNATI CITY OF	750 Richmond Street		Municipal						
PART O	OH-064	013400060066	CINCINNATI CITY OF	752 Richmond Street		Municipal						
PART O	OH-064	013400060065	CINCINNATI CITY OF	754 Richmond Street		Municipal						
PART O	OH-064	013400060064	CINCINNATI CITY OF	756 Richmond Street		Municipal						
PART O	OH-064	013400060063	CINCINNATI CITY OF	Richmond Street		Municipal						
OH-066	14	013500030008	EZZARD CHARLES ASSOCIATES	850 Ezzard Charles Dr		Residential	216,000	817,120	1,033,120	2.13	0.00	0.01\%
OH-067	14	013900030012	CINCINNATI CITY OF	991 Gest St		Row	0	0	0	0.07	0.06	76.14\%
OH-068	14	014200010080	CINCINNATI CITY OF	801 PLUM ST		Row	0	0	0	1.00	0.30	29.75\%
PART O	OH-68	014200010079	CINCINNATI CITY OF	956 Gest St		Row						
PART O	OH-68	014200010078	CINCINNATI CITY OF	1024 Freeman Ave		Row						
PART O	OH-68	014200010077	CINCINNATI CITY OF	1030 Freeman Ave		Row						
PART O	OH-68	014200010076	CINCINNATI CITY OF	1018 Freeman Ave		Row						
PART O	OH-68	014200010075	CINCINNATI CITY OF	801 PLUM ST		Row						
PART O	OH-68	014200010074	CINCINNATI CITY OF	1014 Freeman Ave		Row						
PART O	OH-68	014200010073	CINCINNATI CITY OF	1012 Freeman Ave		Row						
PART O	OH-68	014200010072	CINCINNATI CITY OF	1040 Freeman Ave		Row						
PART O	OH-68	014200010071	CINCINNATI CITY OF	1008 Freeman Ave		Row						
PART O	OH-68	014200010070	CINCINNATI CITY OF	1044 Freeman Ave		Row						
PART O	OH-68	014200010069	CINCINNATI CITY OF	1046 Freeman Ave		Row						
OH-069	14	014200020015	ROTHSCHILD HANNAH C ET AL	931 DERRICK TURNBOW AVE		ROW	0	0	0	0.04	0.00	1.35\%
OH-070	15	018500060113	1130 FINDLAY STREET LLC	1130 Findlay St		Industrial	237,740	1,222,260	1,460,000	1.72	0.00	0.01\%
OH-071	15	018500060123	LOFTSPRING HARRIS \&	1905 DALTON ST		Commercial	0	0	0	0.12	0.03	21.64\%
OH-072	15	018500060116	MPEMR LLC	1850 DALTON AVE		Industrial	51,580	310,960	362,540	0.54	0.05	9.24\%
OH-075	15	018500060022	LEIN LLC	2020 DALTON AVE		Commercial	68,650	355,150	423,800	0.42	0.13	30.30\%
OH-076	15	018400060258	BUDIG REALTY LLC	1100 GEST ST		Vacant - Industrial	0	0	0	0.08	0.00	5.73\%
OH-077	15	018400060256	BUDIG REALTY LLC	1100 GEST ST		Vacant - Industrial	0	0	0	0.14	0.08	62.26\%
OH-078	15	018400060236	BUDIG REALTY LLC	1100 GEST ST		Vacant - Industrial	0	0	0	0.05	0.05	100.00\%
OH-079	15	018400060250	BUDIG REALTY LLC	1100 GEST ST		Vacant - Industrial	0	0	0	0.06	0.06	100.00\%
OH-080	15	018400060114	BUDIG REALTY LLC	1161 Harrison Ave		Vacant - Industrial	41,700	0	41,700	0.11	0.11	100.00\%
OH-081	16	018700080133	MARTIN MEDIA	2402 Spring Grove Ave		Vacant - Commercial	8,500	0	8,500	0.10	0.06	57.17\%
OH-082	16	018700080071	BLACKBURN-IVEY KARENL	2408 Spring Grove Ave		Commercial	0	0	0	0.05	0.02	39.66\%
OH-083	16	018700080070	BLACKBURN-IVEY KARENL	2408 Spring Grove Ave		Commercial	0	0		0.05	0.02	37.36\%
OH-084	16	018700080069	BLACKBURN-IVEY KARENL	2408 Spring Grove Ave		Commercial	19,280	100,720	120,000	0.06	0.02	35.28\%
OH-085	16	018700080159	BLACKBURN-IVEY KARENL	2408 Spring Grove Ave		Commercial	0	0		0.06	0.02	33.28\%
OH-086	16	018700080067	CREATIVE DISPLAYS INC	2412 Spring Grove Ave		Vacant - Commercial	5,700	0	5,700	0.06	0.02	28.48\%
OH-087	16	018700080122	SPRING GROVE SHEET METAL	2428 Spring Grove Ave		Industrial	47,940	153,820	201,760	0.07	0.01	18.62\%
OH-088	16	018700080066	SPRING GROVE SHEET METAL	2428 Spring Grove Ave		Industrial	0	0		0.07	0.01	10.42\%
OH-089	16	18700080065	SPRING GROVE SHEET METAL	2428 Spring Grove Ave		Industrial	0	0	0	0.08	0.00	5.88\%
OH-090	16	018700080064	SPRING GROVE SHEET METAL	2428 Spring Grove Ave		Industrial	0	0	0	0.03	0.00	5.13\%
OH-091	16	018700080063	SPRING GROVE SHEET METAL	2428 Spring Grove Ave		Industrial	0	0	0	0.07	0.00	4.15\%

MAP ID	PAGE\#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	TOTAL ACRES	$\begin{array}{\|l\|} \hline \text { TAKEN } \\ \text { ACRES } \end{array}$	TAKEN PERCENT
OH-092	16	018700080062	SPRING GROVE SHEET METAL	2428 Spring Grove Ave		Industrial	0	0	0	0.08	0.00	1.88\%
OH-093	16	018700080101	SMITH WALTER A \& JOANN E	2440 Spring Grove Ave		Commercial	60,630	173,990	234,620	0.07	0.00	0.76\%
OH-094	16	009700010024	MARTIN MEDIA	2315 McMicken Ave		Vacant - Commercial	4,200	0	4,200	0.20	0.06	31.52\%
OH-095	16	009700010023	MARTIN MEDIA	2317 McMicken Ave		Vacant-Commercial	3,000	0	3,000	0.10	0.03	31.39\%
OH-096	16	009700010022	MARTIN MEDIA	2319 McMicken Ave		Vacant-Commercial	3,400	0	3,400	0.14	0.09	63.96\%
OH-097	16	009700010021	BIERMAN CHRISTOPHER R \&	2321 W MCMICKEN AVE		Residential	19,200	84,700	103,900	0.12	0.12	100.00\%
OH-098	16	009700010020	EADS THOMAS W	2323 W MCMICKEN AVE		Residential	17,230	20,270	37,500	0.10	0.10	100.00\%
OH-099	16	009700010019	SMITH ELLEN K	2325 W MCMICKEN AVE		Residential	18,000	104,900	122,900	0.11	0.11	100.00\%
OH-100	16	009700010018	SMITH ELLEN K	2348 Central Parkway		Vacant - Res	4,820	0	4,820	0.06	0.06	100.00\%
OH-101	16	009700010017	BERGER ALFRED J JR \&	2567 QUEEN CITY AVE		Vacant - Res	6,740	0	6,740	0.11	0.11	100.00\%
OH-102	16	009700010016	BERGER ALFRED J JR \&	2333 McMicken Ave		Vacant - Res	6,740	0	6,740	0.11	0.11	100.00\%
OH-103	16	009700010015	IDEIS BAKER M	2335 McMicken Ave		Residential	12,730	104,430	117,160	0.22	0.22	100.00\%
OH-104	16	009700010014	BERGER ALFRED J J \&	2341 McMicken Ave		Residential	18,050	74,870	92,920	0.21	0.21	100.00\%
OH-105	16	009700010013	MCCARTY TERESA E	2343 W MCMICKEN AVE		Residential	27,070	89,770	116,840	0.22	0.22	100.00\%
OH-106	16	009700010012	GRAPHIC COMMUNICATIONS	2351 W MCMICKEN AVE		Commercial	0	0	0	0.12	0.12	100.00\%
OH-107	16	009700010011	GRAPHIC COMMUNICATIONS	2351 W MCMICKEN AVE		Commercial	26,200	171,500	197,700	0.25	0.25	100.00\%
OH-108	16	009700010010	BURNS ERNESTINE \& DEBORAH	2355 W MCMICKEN AVE		Residential	15,840	96,300	112,140	0.10	0.10	100.00\%
OH-109	16	009700010009	FRANCE MAUREEN \&	2359 W MCMICKEN AVE		Residential	21,940	68,060	90,000	0.15	0.15	100.00\%
OH-110	16	009700010008	SMITH LATOSHA	2361 W MCMICKEN AVE		Residential	18,620	64,200	82,820	0.10	0.04	46.01\%
OH-111	16	009700010007	CONTRERAS SERGIO	2365 W MCMICKEN AVE		Residential	16,200	5,800	22,000	0.18	0.05	25.74\%
OH-112	16	009700010006	OBERDING ROBERT \&	2403 W MCMICKEN AVE		Residential	25,700	112,100	137,800	0.10	0.00	2.70\%
OH-113	16	009700010225	SINGH HARDEET K	2374 CENTRAL PW		Commercial	3,590	0	3,590	0.02	0.02	100.00\%
OH-114	16	009700010224	SINGH HARDEET K	2376 CENTRAL PW		Commercial	3,980	,	3,980	0.04	0.04	100.00\%
OH-115	16	009700010222	SINGH HARDEET K	2378 CENTRAL PW		Commercial	4,010	0	4,010	0.04	0.04	100.00\%
OH-116	16	009700010223	SINGH HARDEET K	2310 CENTRAL PW		Commercial	21,900	15,430	37,330	0.10	0.10	100.00\%
OH-117	16	009700010005	SINGH HARDEET K	2384 CENTRAL PW		Commercial	3,880	0	3,880	0.03	0.03	100.00\%
OH-118	16	009700010004	FISCHESSER ROBERT W	2316 CENTRAL PW		Residential	9,900	71,900	81,800	0.04	0.04	100.00\%
OH-119	16	009700010227	SINGH HARDEET K	Ada Street		Commercial	210	0	210	0.01	0.01	100.00\%
OH-120	16	009700010003	RUFF JASON	2318 Central Parkway		Residential	5,200	800	6,000	0.05	0.05	100.00\%
OH-121	16	009700010002	RICHARD BOWDEN LLC	2320 CENTRAL PW		Residential	12,200	14,800	27,000	0.05	0.05	100.00\%
OH-122	16	009700010001	INSCO RONALD G	2322 Central Parkway		Residential	9,000	2,000	11,000	0.05	0.05	100.00\%
OH-123	16	009800050095	BAKER IRENE	2404 CENTRAL PW		Vacant - Res	3,420	0	3,420	0.06	0.00	0.18\%
OH-124	16	009800050094	HARDCORN ANDREALTR	2406 Central Parkway		Vacant - Commercial	2,900	0	2,900	0.05	0.00	0.59\%
OH-125	16	009800050093	HARDCORN ANDREA LTR	2406 Central Parkway		Vacant-Commercial	2,900	0	2,900	0.05	0.00	0.99\%
OH-126	16	009800050092	HARDCORN ANDREA LTR	2406 Central Parkway		Vacant-Commercial	2,900	0	2,900	0.06	0.00	0.67\%
OH-127	16	009700010161	SPENCER PAMELA	2408 Fargo Al		Vacant - res	10,490	0	10,490	0.04	0.04	100.00\%
OH-128	16	009800050116	SCHULTE GERHARD B	2409 W MCMICKEN AVE		Residential	8,400	35,000	43,400	0.04	0.04	100.00\%
OH-129	16	009800050078	SCHUCK HAROLD A	2400 McMicken Ave		Residential	11,730	71,500	83,230	0.03	0.03	100.00\%
OH-130	16	009800050106	ROBERTS SHIRLEE ANN	McMillan Ave		Vacant - Res	2,680	0	2,680	0.03	0.03	100.00\%
OH-131	16	009800050105	HOMECOMINGS FINANCIAL	2402 Fargo Al		Vacant - Res	6,530	0	6,530	0.04	0.04	100.00\%
OH-132	16	009800050104	SPENCER JOE \& ODESSA	2404 Fargo Al		Vacant - Res	2,890	0	2,890	0.03	0.03	100.00\%
OH-133	16	009800050103	ROLAND CAROL SUE	2406 FARGO AL		Vacant - Res	7,380	0	7,380	0.04	0.04	100.00\%
OH-134	16	009800050204	RoLAND CAROL SUE	2406 FARGO AL		Vacant - Res	0	0	0	0.01	0.01	100.00\%
OH-135	16	009800050100	SHEPHERD ZACHARIAH	1059 RUSH ST		Residential	9,630	49,860	59,490	0.08	0.08	100.00\%
OH-136	16	009800050102	KINNEY PATRICIA G \&	1055 Rush Street		Vacant-Res	860	0	860	0.03	0.03	100.00\%
OH-137	16	009800050111	ALLENDORF LOUISE	4334 NORTH BEND RD		Vacant - Res	0	0	0	0.00	0.00	100.00\%
OH-138	16	009800050110	ALLENDORF LOUISE	2423 McMicken Ave		Vacant - Res	540	0	540	0.00	0.00	100.00\%
No Label	12	14700070133	CITY OF CINCINNATI	602 W. Fourth St.		Commercial	0	0	0	0.00	0.00	0.00\%

MAP ID	PAGE \#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	$\begin{aligned} & \text { TOTAL } \\ & \text { ACRES } \end{aligned}$	TAKEN ACRES	$\begin{array}{\|l\|} \hline \text { TAKEN } \\ \text { PERCENT } \end{array}$
KY-001	1	028-10-16-014.00	PARK 75 PROPERTY OWNERS ASSN	222 GRANDVIEW DR		commercial	0	0	0	1.13	0.02	1.65\%
KY-002	1	028-10-16-011.00	PARK 75 PROPERTY OWNERS ASSN	250 GRANDVIEW DR		commercial	0	0	0	5.55	0.01	0.10\%
KY-003	2	028-30-08-001.00	FT MITCHELL POINTE COUNCIL OF	45-A MAPLE AVE W		residential	0	0	0	4.14	0.25	6.04\%
KY-004	2	028-30-08-027.01	FT MITCHELL HOTEL LLC	2100 DIXIE HWY		commercial	1,500,000	2,600,000	4,100,000	6.92	0.11	1.60\%
KY-005	2	028-30-04-005.00	BEECHWOOD INDEPENDENT SCHOOL	50 BEECHWOOD RD		commercial	1,000,000	9,126,900	10,126,900	16.64	0.10	0.59\%
KY-006	3	028-30-10-001.00	CENTRAL CHURCH OF NAZARENE	2006 PIECK LN		commercial	301,000	700,000	1,001,000	2.86	0.44	15.41\%
KY-007	3	028-30-10-001.02	CENTRAL CHURCH OF NAZARENE	2006-A PIECK LN		commercial	60,000	248,000	308,000	1.11	0.15	13.37\%
KY-008	3	028-30-12-006.00	SAM PROPERTIES	1971 PIECK LN		residential	40,000	140,000	180,000	0.27	0.27	100.00\%
KY-009	3	028-30-12-005.00	KITO PROPERTIES I LLC	1975 PIECK LN		residential	35,000	164,000	199,000	0.44	0.06	13.66\%
KY-010	3	041-20-00-151.00	JAHNKE MARK A \& SHERRY L	51 RIVARD DR		residential	30,000	150,000	180,000	0.49	0.00	0.14\%
KY-011	3	041-20-00-151.02	OSTERHAGE SUSAN K \& WILLIAM J	45 RIVARD DR		residential	30,000	150,000	180,000	0.27	0.27	100.00\%
KY-012	3	027-40-15-009.00	FORT WRIGHT PLAZA LLC	1949-2001 DIXIE HWY		commercial	1,000,000	841,500	1,841,500	9.71	0.42	4.32\%
KY-013	3	041-20-00-002.00	HOSPITALILITY ASSOS OF	1945 DIXIE HWY		commercial	415,000	1,135,000	1,550,000	1.93	1.93	100.00\%
KY-014	3	041-20-00-003.00	EMPIRE ENTERPRISES LLC	1937 DIXIE HWY		commercial	376,000	874,000	1,250,000	2.07	0.09	4.53\%
KY-015	3	041-20-00-003.01	B V GRIFFITH INC	1939 DIXIE HWY		commercial	180,000	470,000	650,000	1.03	0.01	0.71\%
KY-016	3	041-20-00-006.00	WESSELS CONST \& DEV CO INC	1885 DIXIE HWY		commercial	295,000	1,505,000	1,800,000	1.02	0.12	12.16\%
KY-017	4	041-20-00-080.01	MCKINLEY GUSTIN A \&	11 HIGHVIEW DR		vacant - res	30,000	0	30,000	1.20	0.01	0.45\%
KY-018	4	041-20-00-080.02	KALAPASEV NENAD S \&	15 HIGHVIEW DR		residential	30,000	118,000	148,000	0.58	0.58	100.00\%
KY-019	4	041-20-00-015.00	STOLZ JOHN \& MARCELLA	HIGHVIEW DR		vacant - res	500	0	500	0.08	0.08	100.00\%
KY-020	4	041-20-20-006.01	WALLACE JAMES E	1598 MARCELLA DR		residential	30,000	97,100	127,100	0.37	0.01	1.70\%
KY-021	4	041-20-20-005.03	JOHNSON MARY M	1596 MARCELLA DR		residential	30,000	110,000	140,000	0.57	0.06	10.11\%
KY-022	4	041-20-20-005.02	HORSTKAMP VERA S TRUSTEE	1594 MARCELLA DR		residential	30,000	90,000	120,000	0.35	0.07	19.17\%
KY-023	4	041-20-20-004.03	BROPHY JOHN H	1952 MARCELLA DR		residential	30,000	90,000	120,000	0.34	0.08	22.29\%
KY-024	4	041-20-00-007.00	FT WRIGHT CITY	1881 DIXIE HWY		commercial	474,000	2,126,000	2,600,000	1.36	0.37	27.18\%
KY-025	4	041-20-00-009.01	KUCHLE REALTY CO LLC	1817-25 DIXIE HWY		vacant - com	639,500	0	639,500	1.72	0.02	1.39\%
KY-026	5	041-20-01-003.01	AUTOMANAGE LLC	700 WRIGHTSUMMIT PKWY		vacant - com	1,204,500	0	1,204,500	4.50	0.25	5.53\%
KY-027	5	041-20-01-003.02	SISTERS OF NOTRE DAME OF	WRIGHTSUMMIT PKWY		vacant - com	317,000	0	317,000	1.27	0.11	8.94\%
KY-028	5	041-20-00-001.01	SISTERS OF NOTRE DAME OF	1601-A DIXIE HWY		vacant - com	143,000	0	143,000	0.68	0.26	38.46\%
KY-029	5	041-20-00-001.00	SISTERS OF NOTRE DAME OF	1601 DIXIE HWY		commercial	1,890,000	54,500,000	56,390,000	42.69	0.97	2.26\%
KY-030	5	041-40-00-005.00	OLT REAL ESTATE HOLDINGS II	505 ST JOSEPH LN		residential	60,000	215,000	275,000	0.44	0.44	100.00\%
KY-031	5	041-40-00-001.03	DICKMAN JEANNE \& DALE VINCENT	504 ST JOSEPH LN		commercial	60,000	215,000	275,000	0.59	0.14	23.69\%
KY-032	5	041-40-00-001.04	WACHS DANIEL G	502 ST JOSEPH LN		residential	70,000	232,500	302,500	0.94	0.94	100.00\%
KY-033	5	041-40-00-009.00	OLT REAL ESTATE LLC	1200-04 ELBERTA CIR		commercial	135,000	250,000	385,000	3.58	1.16	32.43\%
KY-034	5	041-20-20-004.01	TERREL SYDNEY J	1590 MARCELLA DR		residential	30,000	90,000	120,000	0.34	0.09	27.85\%
KY-035	5	041-20-20-003.01	WIGGER RALPH P \& REBECCA L	1588 MARCELLA DR		residential	30,000	90,000	120,000	0.28	0.09	32.68\%
KY-036	5	041-20-20-002.01	RALEIGH JOHNNY \& BELLE R	1586 MARCELLA DR		residential	30,000	90,000	120,000	0.18	0.02	10.50\%
KY-037	6	041-40-00-016.00	ALBERS ROBERT \& JANEY	1208 FAR HILLS DR		vacant - res	45,000	0	45,000	1.91	0.02	1.24\%
KY-038	6	041-40-00-017.00	DICKMAN ROBERT G	1132-34-35-37 CEDER RIDGE LN		residential	300,000	1,540,000	1,840,000	9.54	1.76	18.46\%
KY-039	6	041-30-00-020.01	GRAY DAVID \& HAZEL	507 SCENIC DR		residential	45,000	140,000	185,000	0.45	0.45	100.00\%
KY-040	6	041-30-00-020.02	WALL TERRANCE M JR	508 SCENIC DR		residential	100,000	200,000	300,000	0.26	0.26	100.00\%
KY-041	6	041-30-00-020.09	BEUTTEL WILLIAM C \& JANE	506 SCENIC DR		residential	60,000	105,000	165,000	0.32	0.32	100.00\%
KY-042	6	041-30-00-106.00	SANITATION DISTRICT \#1 OF	500 SCENIC DR		vacant - res	50,000	0	50,000	3.42	0.28	8.04\%
KY-043	6	041-30-00-020.03	BARRETT ROBIN	510 SCENIC DR		residential	60,000	100,000	160,000	0.28	0.28	100.00\%
KY-044	6	041-30-00-020.04	UTLEY FORREST G	512 SCENIC DR		residential	100,000	195,000	295,000	0.61	0.00	0.31\%
KY-045	7	055-11-33-005.00	SAINT ELIZABETH MEDICAL	MONROE ST		vacant - com	15,000	0	15,000	3.03	0.41	13.69\%
KY-049	8	040-44-09-026.00	EUBANKS REBECCA	610 12TH ST W		residential	5,000	70,000	75,000	0.06	0.00	5.17\%
KY-050	8	040-44-09-025.00	CUMMINGS HEIDI	608 12TH ST W		residential	5,000	87,000	92,000	0.06	0.06	100.00\%
KY-051	8	040-44-09-024.00	WHEELER SAM	606 12TH ST W		residential	5,000	29,900	34,900	0.05	0.05	100.00\%
KY-052	8	040-44-09-023.00	FROELICHER CHARLOTTE \& MARIE	604 12TH ST W		residential	5,000	50,000	55,000	0.06	0.06	100.00\%
KY-053	8	040-44-09-020.00	GREFER JEFFREY \& LORI	605 11TH ST W		residential	5,000	24,000	29,000	0.06	0.06	100.00\%
KY-054	8	040-44-09-019.00	GIER THOMAS C \& DANINE B	609 11TH ST W		residential	5,000	50,000	55,000	0.12	0.00	1.42\%
KY-055	8	040-44-08-017.01	FINAN JOSEPH L	606 11TH ST W		residential	5,000	29,000	34,000	0.05	0.05	100.00\%
KY-056	8	040-44-08-017.02	GREFER JEFF \& LORI	608 11TH ST W		residential	5,000	27,000	32,000	0.05	0.05	100.00\%
KY-057	8	040-44-08-018.00	GREFER JEFFREY M \& LORI A	610-12 11TH ST W		residential	5,000	3,000	8,000	0.11	0.01	9.55\%
KY-065	8	040-44-06-027.00	LEWISBURG ENTERPRISES LLC	610-18 PIKE ST		commercial	150,000	0	150,000	0.31	0.31	100.00\%
KY-066	8	040-44-06-025.00	LEWISBURG ENTERPRISES LLC	620 LEWIS ST		vacant - res	10,000	0	10,000	0.12	0.03	21.08\%

MAP ID	PAGE \#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	TOTAL ACRES	$\begin{aligned} & \text { TAKEN } \\ & \text { ACRES } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TAKEN } \\ \text { PERCENT } \end{array}$
KY-067	8	040-44-06-024.00	CE O ASSOCIATES	622 LEWIS ST		residential	5,000	26,500	31,500	0.11	0.11	100.00\%
KY-068	8	040-44-06-023.00	C E O ASSOCIATES INC	624 LEWIS ST		residential	5,000	27,000	32,000	0.10	0.10	100.00\%
KY-069	8	040-44-06-022.00	GRONEMAN ALLEN	626 LEWIS ST		residential	5,000	35,000	40,000	0.10	0.10	100.00\%
KY-070	8	040-44-06-021.00	GIGLIO EMIL F \& THERESA L	628 LEWIS ST		residential	5,000	24,000	29,000	0.09	0.09	100.00\%
KY-071	8	040-44-06-020.00	LOUDEN KATHERINE	630 LEWIS ST		residential	5,000	35,000	40,000	0.08	0.08	100.00\%
KY-072	8	040-44-06-019.00	MARTIN JOSEPH C	632-634 LEWIS ST		commercial	20,000	85,000	105,000	0.17	0.02	10.18\%
KY-073	8	040-44-03-018.00	BOSSE DOUGLAS \& DEREK \&	636-40 LEWIS ST		commercial	25,000	68,000	93,000	0.26	0.00	0.08\%
KY-074	8	040-44-07-015.01	ROMAN CATHOLIC BISHOP OF COV	639-41 LEWIS ST		vacant - com	31,000	0	31,000	0.28	0.28	100.00\%
KY-075	8	040-44-07-015.02	ST JOHNS CHURCH	652-54 PIKE ST		commercial	100,000	0	100,000	0.55	0.07	13.09\%
KY-076	8	040-44-06-013.00	STANDARD CLUB OF COVINGTON	643 LAUREL ST		commercial	27,000	63,500	90,500	0.34	0.01	2.38\%
KY-078	8	040-44-06-002.00	WILDER DARRELL \& MARY	639 9TH ST W		residential	5,000	45,000	50,000	0.11	0.01	7.45\%
KY-079	8	040-44-06-003.00	SCHULTE JOSEPH M	641-5 9TH ST W		commercial	15,000	37,500	52,500	0.17	0.00	1.29\%
KY-096	8	040-44-04-033.00	BIRMINGHAM TIMOTHY H	872 CRESCENT AVE		residential	6,000	39,000	45,000	0.06	0.06	100.00\%
KY-113	8	040-44-04-014.00	T LC PROPERTIES INC	826 CRESCENT AVE		commercial	20,000	0	20,000	0.04	0.04	100.00\%
KY-114	8	040-44-04-013.00	COVINGTON CITY OF	826 CRESCENT AVE		commercial	10,000	0	10,000	0.09	0.01	13.78\%
KY-115		040-44-04-012.00	MAYHEW AMANDA E	824 CRESCENT AVE		residential	5,000	106,800	111,800	0.06	0.06	100.00\%
KY-116	8	040-44-04-011.00	RUEDEBUSCH ROBERT L	822 CRESCENT AVE		residential	10,000	83,000	93,000	0.06	0.06	100.00\%
KY-117	8	040-44-04-010.01	CLAXTON FELECIA	820 CRESCENT AVE		residential	5,000	35,000	40,000	0.06	0.06	100.00\%
KY-118	8	040-44-04-009.00	JOHNSON CHARLES M \& LILLIAN	818 CRESCENT AVE		residential	5,000	35,000	40,000	0.05	0.05	100.00\%
KY-119	8	040-44-04-008.00	HLE PROPERTIES LLC	816 CRESCENT AVE		residential	5,000	30,000	35,000	0.06	0.06	100.00\%
KY-120	8	040-44-04-007.00	JOHNSON DAVID	812 CRESCENT AVE		residential	4,000	6,900	10,900	0.11	0.11	100.00\%
KY-121	8	040-44-04-005.00	HLE PROPERTIES LLC	810 CRESCENT AVE		vacant-res	1,500	0	1,500	0.05	0.05	100.00\%
KY-122	8	040-44-04-004.00	HLE PROPERTIES LLC	808 CRESCENT AVE		residential	5,000	40,000	45,000	0.06	0.06	100.00\%
KY-123	8	040-44-04-003.00	BECKER PATRICIA M	806 CRESCENT AVE		residential	5,000	40,000	45,000	0.06	0.06	100.00\%
KY-124	8	040-44-04-002.00	RAHEMI FATNA	804 CRESCENT AVE		residential	5,000	7,000	12,000	0.06	0.06	100.00\%
KY-125	8	040-44-20-007.01	JLD MANAGEMENT LLC	540 WATKINS ST		residential	5,000	73,500	78,500	0.15	0.15	100.00\%
KY-126	8	040-44-19-013.00	COLUMBIA SUSSEX CORP	JILLIANS WAY		commercial	1,000,000	3,200,000	4,200,000	4.11	0.43	10.34\%
KY-127	8	040-44-19-004.00	PIKE PRO LLC	555 PIKE ST		commercial	105,000	112,000	217,000	0.35	0.35	100.00\%
KY-128	8	040-44-19-003.00	COLUMBIA SUSSEX CORP	537 PIKE ST		vacant - com	1,200,000	0	1,200,000	0.36	0.10	27.50\%
KY-131	8	040-44-18-017.00	MARSHALL ROBERT G \& BLANCHE	500 PIKE ST		commercial	50,000	28,000	78,000	0.21	0.01	4.51\%
KY-132	8	040-44-18-018.00	MACKE JAMES E	512-20 PIKE ST		commercial	115,000	296,000	411,000	0.38	0.07	18.81\%
KY-133	8	040-44-12-001.00	KRONE BRUCE A TRUSTEE	550 PIKE ST		commercial	472,500	1,014,000	1,486,500	2.17	0.39	17.98\%
KY-134	8	040-44-11-001.00	OAKLAND PROPERTIES INC	902-26 WILLOW RUN		commercial	150,000	485,000	635,000	0.94	0.06	6.15\%
KY-137	8	040-44-10-010.01	ATSINGER EDWARD G III TRUSTEE	620 9TH ST W		tower	0	0	0	0.34	0.34	100.00\%
KY-138	8	040-44-10-010.00	COVINGTON CITY OF	847 PHILADELPHIA		commercial	133,500	116,500	250,000	2.62	0.59	22.63\%
KY-139	8	040-44-10-010.02	SANDERS ROBTE TRUSTEE OF	9TH ST W		commercial	40,900	0	40,900	0.02	0.01	42.50\%
KY-146	9	040-43-02-013.00	BECKER FAMILY LTD PTN	643-723 CRESCENT AVE		vacant - res	70,000	0	70,000	2.16	0.63	29.04\%
KY-147	9	040-43-02-012.00	MANN ROBERT J \& JULIE	641 CRESCENT AVE		residential	5,000	55,000	60,000	0.05	0.05	100.00\%
KY-148	9	040-43-02-011.00	AXUT BUILDING LLC	637-39 CRESCENT AVE		vacant - res	10,000	0	10,000	0.10	0.10	100.00\%
KY-149	9	040-43-02-010.00	JOHNSON DAVID	635 CRESCENT AVE		residential	10,000	20,000	30,000	0.08	0.08	100.00\%
KY-150	9	040-43-02-009.05	AXUT BUILDING LLC	627-33 CRESCENT AVE		vacant - res	52,000	0	52,000	0.22	0.22	100.00\%
KY-151	9	040-43-03-022.00	BEZOLD CLEMENT LJR	630 CRESCENT AVE		vacant - res	1,000	0	1,000	0.06	0.06	100.00\%
KY-152	9	040-43-03-023.00	WURZELBACHER JAMIE J	628 CRESCENT AVE		vacant - res	9,000	0	9,000	0.05	0.05	100.00\%
KY-153	9	040-43-03-024.00	WURZELBACHER JAMIE J	624 CRESCENT AVE		vacant - res	4,000	0	4,000	0.06	0.06	100.00\%
KY-154	9	040-43-02-009.04	COTTON JOSEPH W \& NORMA	625 CRESCENT AVE		residential	5,000	20,000	25,000	0.05	0.05	100.00\%
KY-155	9	040-43-02-009.03	MATTINGLY KELLY S	623 CRESCENT AVE		vacant - res	5,000	0	5,000	0.05	0.05	100.00\%
KY-156	9	040-43-02-009.02	MATTINGLY KELLY S	621 CRESCENT AVE		residential	5,000	40,000	45,000	0.03	0.03	100.00\%
KY-157	9	040-43-02-009.01	MATTINGLY KELLY S	619 CRESCENT AVE		residential	5,000	40,000	45,000	0.04	0.04	100.00\%
KY-158		040-43-02-008.00	MURNAN ALBERT E \& PHYLIS D	615-17 CRESCENT AVE		residential	20,000	36,900	56,900	0.08	0.08	100.00\%
KY-159	9	040-43-02-007.00	HANAUER MARK R	611-13 CRESCENT AVE		residential	20,000	40,000	60,000	0.15	0.01	3.40\%
KY-164	9	040-43-03-028.00	HUE ENTERPRISES INC	502 CRESCENT AVE		commercial	43,000	15,000	58,000	0.33	0.33	100.00\%
KY-177	9	040-34-03-005.00	COVINGTON CITY OF	670 4TH ST W		commercial	850,000	200,000	1,050,000	0.73	0.73	100.00\%
KY-178	9	040-34-03-003.00	COVINGTON CITY OF	669-71 3RD ST W		commercial	1,000,000	112,000	1,112,000	0.50	0.50	100.00\%
KY-179	9	040-34-03-002.00	THIRD STREET LLC	673-75 3RD ST W		commercial	250,000	50,000	300,000	0.30	0.03	9.17\%
KY-180	9	040-34-02-001.00	RUSK HEATING \& AIR COND INC	664-66 3RD ST W		commercial	475,000	215,000	690,000	0.72	0.72	100.00\%
KY-181	9	040-34-02-012.00	COVINGTON CITY OF	687 2ND ST W		vacant - res	35,000	0	35,000	0.34	0.34	100.00\%

ALTERNATIVE I PROPERTY MAPS

MAP ID	PAGE \#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	$\begin{gathered} \hline \text { LAND USE } \\ \text { CLASS } \\ \hline \end{gathered}$	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	$\begin{array}{\|l} \hline \text { TOTAL } \\ \text { ACRES } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { TAKEN } \\ \text { ACRES } \\ \hline \end{array}$	TAKEN PERCENT
KY-182	9	040-34-02-011.00	COVINGTON CITY OF	689 2ND ST W		commercial	150,000	100,000	250,000	0.81	0.14	16.91\%
KY-183	10	040-34-03-008.00	COVINGTON CITY OF	610-A 2ND ST W		vacant - res	7,000	0	7,000	6.17	1.59	25.81\%

MAP ID	PAGE \#	PIDN OR PARCEL ID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	MARKET LAND	MARKET IMPROVEMENT	MARKET TOTAL	total ACRES	taken ACRES	TAKEN PERCENT
OH-001	10	013700030078	DUKE ENERGY OHIO INC	Front Street		Industrial	919000	1,041,800	1,960,800	11.04	3.73	33.83\%
OH-002	10	013700030020	DUKE ENERGY OHIO INC	646 Mehring Way		Industrial	464,200	671,100	1,135,300	4.28	0.90	20.91\%
OH-003	10	013700030059	HILLTOP CONCRETE CORP	612 Mehring Way		Industrial	92,640	3,740	96,380	0.04	0.04	100.00\%
OH-004	10	013700030060	HILLTOP CONCRETE CORP	612 Mehring Way		Industrial	0	0	0	0.05	0.03	54.95\%
OH-005	10	013700030054	HILLTOP BASIC RESOURCES	Augusta Avenue		Vacant - Ind	45,140	0	45,140	0.37	0.01	1.97\%
OH-006	10	013700030044	CORMAN ROBERT	603 W Pete Rose Way		Commercial	104,550	33,760	138,310	0.30	0.09	30.20\%
Part of OH-006	10	013700030045	CORMAN ROBERT	603 W Pete Rose Way		Commercial	0	0		0.18	0.00	0.89\%
OH-008	10	013700030053	HILLTOP CONCRETE CORP	Augusta Avenue		Vacant - Ind	39,940	0	39,940	0.06	0.06	96.76\%
OH-009	12	013700030028	CORMAN ROBERT	603 W Pete Rose Way		Vacant - Ind	68,640	0	68,640	0.04	0.04	100.00\%
$\mathrm{OH}-010$	12	013700030029	CORMAN ROBERT	603 W Pete Rose Way		Vacant - Ind	0	0	0	0.03	0.03	98.82\%
OH-011	12	013700030030	CORMAN ROBERT	603 W Pete Rose Way		Vacant - Ind	0	0	0	0.03	0.02	76.26\%
OH-012	12	013700030031	CORMAN ROBERT	603 W PETE ROSE WY		Vacant	68640	0	68,640	0.03	0.01	44.38\%
OH-013	12	013700030032	CORMAN ROBERT	603 W Pete Rose Way		Vacant - Ind	0	0	0	0.05	0.00	9.53\%
OH-014	12	013700030046	CORMAN ROBERT	603 W Pete Rose Way		Vacant - Ind	0	0	0	0.18	0.00	0.89\%
OH-015	12	014700060068	CINCINNATI CITY OF	Pete Rose Way		Commercial	555,460	43,900	599,360	1.31	0.03	2.60\%
OH-016	12	014700050121	LONGWORTH HALL LLC	700 Pete Rose Way		Commercial	996,580	6,651,110	7,647,690	2.26	0.50	22.04\%
Part of OH-016	12	014700050126	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial		0		0.07	0.07	100.00\%
Part of OH-016	12	014700050127	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial	,	-	-	0.11	0.11	100.00\%
Part of OH-016	12	014700050128	LONG W ORTH HALL LLC	700 W PETE ROSE WAY		Commercial	0	\bigcirc	- 0	0.10	0.10	100.00\%
Part of OH-016	12	014700050120	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial	0	-	0	0.48	0.19	40.40\%
Part of OH-016	12	014700050124	LONGWORTH HALL LLC	700 W PETE ROSE WAY		Commercial	,	0	0	0.05	0.05	100.00\%
Part of $\mathrm{OH}-016$	12	014700050125	LONG WORTH HALL LLC	701 W PETE ROSE WAY		Commercial	0	0		0.62	0.04	7.21\%
Part of OH-016	12	014700050119	LONG W ORTH HALL LLC	700 W PETE ROSE WAY		Commercial		0	\bigcirc	0.09	0.02	19.32\%
OH-024	12	014700050140	CENTRAL RAILROAD CO OF			Railroad	0	0	0	1.46	0.04	2.55\%
OH-025	12	014700050123	CENTRAL RAILROAD CO OF			Railroad	0	0	0	0.07	0.07	100.00\%
OH-026	12	014700050051	COVINGTON \& CINCINNATI			Railroad	0	0	0	0.03	0.00	0.37\%
OH-029	12	014700050149	CSX TRANSPORATION INC	500 WATER ST		Railroad	0	0	0	0.14	0.14	100.00\%
$\mathrm{OH}-030$	12	014700050148	LONGWORTH HALL LLC	53 rd Street		Vacant - Ind	4,010	0	4,010	0.03	0.03	100.00\%
OH-031	12	014700050152	NORTON OUTDOOR ADVERTISING	62 3rd Street		Vacant - Industrial	0	0	,	0.06	0.06	100.00\%
OH-032	12	014700050153	CINCINNATI CITY OF	62 3rd Street		Vacant - Industrial	0	0	0	0.06	0.06	100.00\%
OH-033	12	014700050054	LONGWORTH HALL LLC	53 rd Street		Vacant - Ind	10,990	0	10,990	0.06	0.06	100.00\%
OH-034	12	014700070212	CALDWELL REALTY CO	690 3rd Street		Industrial	459000	651,900	1,110,900	0.27	0.07	26.18\%
OH-035	12	014700070225	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	1,103,700	4,096,300	5,200,000	0.20	0.20	100.00\%
Part of OH-035	12	014700070226	TOWNVIEW 56TH STREET LLC	359 Gest St		Commercial			-	0.02	0.02	100.00\%
Part of OH-035	12	014700070214	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial		\bigcirc	-	0.03	0.03	100.00\%
Part of $\mathrm{OH}-035$	12	014700070215	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial		0	-	0.03	0.03	100.00\%
Part of OH-035	12	014700070216	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	,	\bigcirc	-	0.03	0.03	100.00\%
Part of $\mathrm{OH}-035$	12	014700070177	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial		-	\bigcirc	0.18	0.18	100.00\%
Part of OH-035	12	014700070161	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial	,	\square	0	0.10	0.06	54.13\%
Part of $\mathrm{OH}-035$	12	014700070715	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial		0	0	0.08	0.00	2.77\%
Part of OH-035	12	014700070256	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial		0	0	0.27	0.01	3.65\%
Part of OH-035	12	014700070258	TOWNVIEW 56TH STREET LLC	360 Gest St		Commercial		-	- 4	0.56	0.02	3.53\%
OH-045	12	014700070268	DUKE ENERGY OHIO INC	Gest Street		Commercial	1,058,700	3,083,900	4,142,600	6.50	0.20	3.06\%
OH-046	12	014700070267	CALDWELL REALTY CO	500 Gest Street		Industrial	909,300	1,401,220	2,310,520	2.33	0.41	17.46\%
OH-047	12	014700040199	CALDWELL REALTY CO	P O BOX 28606		Industrial	0	0	0	0.88	0.24	26.69\%
OH-048	12	014600050180	CALDWELL REALTY CO	P O BOX 28606		Industrial	0	0	0	0.42	0.06	13.88\%
OH-050	12	013600030241	TAPPAN PROPERTIES Fox 19 Station	635 Seventh Street		Commercial	766,800	2,933,200	3,700,000	2.56	0.38	14.71\%
OH-051	12	014500030229	CITY OF CINCINNATI	801 PLUM ST		Row	0	0	0	0.07	0.01	18.28\%
OH-052	12	014500030230	CITY OF CINCINNATI	801 PLUM ST		ROW	0	0	,	0.07	0.02	20.60\%
$\mathrm{OH}-053$	12	014500030231	CITY OF CINCINNATI	801 PLUM ST		Row	0	0	0	0.04	0.01	18.96\%
OH-054	12	014500030232	CITY OF CINCINNATI	801 PLUM ST		ROW	0	0	0	0.04	0.01	17.26\%
OH-056	12	014500030246	STARGEL ROGENA TR	405 W SEVENTH ST		Commercial	1,001,400	902,300	1,903,700	0.74	0.05	7.39\%
OH-057	12	014600060115	AUTOMATIC DATA PROCESSING	5007 th Street		Commercial	4,339,600	1,910,400	6,250,000	7.00	0.06	0.90\%
OH-058	13	013600030059	CINCINNATI CITY OF	709 Cutter Street		Row	0	0	0	0.04	0.02	37.93\%
OH-059	13	013600030060	CINCINNATI CITY OF	705 Cutter		Row	0	0		0.06	0.01	19.79\%
OH-060	13	013600010211	AAIG OF CINCINNATILLC	800 W 8TH ST		Commercial	821300	1,975,700	2,797,000	1.17	0.01	0.99\%
OH-063	13	013600020249	CINCINNATI CITY OF	904 Cutter Street		Commercial	108,980	36,260	145,240	1.13	0.01	0.55\%
OH-064	13	013600020056	CINCINNATI CITY OF	706 Ninth Street		Park	5,000	0	5,000	5.23	0.28	5.33\%
PART OF C		013600020055	CINCINNATI CITY OF	706 Ninth Street								

MAPID	PAGE \#	PIDN OR PARCELID	OWNER	ADDRESS	ADDRESS CONT.	LAND USE CLASS	market LAND	MARKET IMPROVEMENT	MARKEt TOTAL	$\left[\begin{array}{l} \text { TOTAL } \\ \text { ACRES } \end{array}\right.$		taken ACRES	taken PERCENT
OH-134	16	018700090004	E\& T REAL ESTATE HoLling	1220 Harrison Ave		Industrial	74,000	41,000	115,000		2.38	0.44	18.68\%
OH-135	16	018700090156	L\&N RAIL	500 Water St		Industrial		0	0		2.32	0.02	0.83\%
No label	12	14700070133	CITY Of CINCIINNATI	602 W. Fourth St.		Commercial	0	0	0		0.00	0.00	0.00\%

Appendix D
Drainage Criteria Forms (LD-35)

GENERAL PROJECT INFORMATION

Kentucky	I-71 / I-75
Kenton County	Route
	(Attach Typical Section)

AFFECTED ROADWAYS:	Route	Average Daily Traffic	Rural / Urban
INTERSTATE OR OTHER L/A FACILITIES	I-71, I-75	I-75 (Dixie Highway to $12^{\text {th }}$ Street) 221,780 ADT (2035) I-75 (12 ${ }^{\text {th }}$ Street to Bridge) $-79,500$ ADT (2035) I-71-77,900 ADT (2035)	Urban
ARTERIALS AND COLLECTORS	US 42 (Dixie Highway), West $3^{\text {rd }}$ St., West $4^{\text {th }}$ St., West $5^{\text {th }}$ St., West $9^{\text {th }}$ St., West $11^{\text {th }}$ St., West $12^{\text {th }}$ St, Collector-Distributor	$\begin{aligned} & \text { C-D }-75,510 \text { ADT (2035) } \\ & \text { US } 42-24,070 \text { ADT (2035) } \\ & 12^{\text {th }} \text { St. }-12,060 \text { ADT (2035) } \\ & 9^{\text {th }} \text { St. }-5,460 \text { ADT (2035) } \\ & 4^{\text {th }} \text { St. }-16,510 \text { ADT (2035) } \end{aligned}$	Urban
LOCALS	East Orchard Rd., Rivard Dr., Kyles Ln., Bullock St., Jillians Way, Pike St., Lewis St., Crescent Ave., Philadelphia St.	Kyles Ln. - 27,500 ADT (2035) Bullock St. - 16,550 ADT (2035) Jillians Way - 17,540 ADT (2035) Pike St. - 16,310 ADT (2035)	Urban
CLEAR ZONE	30 ft		

All Units are English:
PIPE POLICY:
The Pipe Policy of KYTC will be used for this project. See KYTC Drainage Guidance Manual; KYTC Drainage Manual, 2009 Edition, DR 705 for Storm Sewers; and KYTC Standard Drawings. Pipe is bid as "xx inch Culvert Pipe" or "xx inch Storm Sewer Pipe". Pipe materials are not specified on plans. The contractor selects pipe material based on fill heights and pH shown on pipe sheets. Pipe is furnished and installed in conformance with KYTC Standard Specifications for Road and Bridge Construction, Section 701.

POST CONSTRUCTION BMP POLICY:

A detailed Post Construction BMP policy doesn't exist for KYTC at this time. Follow a combination of KPDES permit requirements under KYR100000 and KYTC guidelines in KYTC Drainage Manual, 2009 Edition, DR 200; and KYTC Drainage Guidance Manual, Chapter 10 - Erosion Control (These can be found on the KYTC Drainage website at http://transportation.ky.gov/design/drainage/drainage.html). For water quality regulations, see KAR 401, Chapter 5. General Erosion Control requirements can be found in KYTC Standard Specifications for Road and Bridge Construction, Section 701, Sections 212 and 213. Karst Guidelines can be found in KYTC Drainage Manual, 2009 Edition, DR 200. See updated version of KYTC Special Note 11F for turf reinforcing mat specifications. Otherwise, defer to municipal separate storm sewer systems (MS4) and local criteria if possible.

For KYTC projects, designers do not develop detailed Erosion Control Plans for general erosion control. Rather, the designer conservatively estimates erosion control quantities using KYTC formulas. The contractor and resident engineer develop a detailed Erosion Control Plan including placements for erosion control structures such as silt traps, silt fence, etc. and submit it to the Kentucky Division of Water. For additional general erosion control information, contact Danny Jasper or Stephen Bowling in KYTC Central Office Construction at (502) 564-4780.

Section A. Roadway Culverts

1. DESIGN STORM RETURN INTERVAL (DR-04.300, Table 4-1 Return Interval; Table 402-1, Design Storm Return Interval):

	Design	$\underline{\text { Check }}$ a.	ADT <400 (Local Roads)
b.	$400<$ ADT <1700 (Collector)	10Year, 25 Year	100 Year
c.	$1700<$ ADT <5000 (Arterial)	25 Year	100 Year
d.	ADT $>5,000$ (Interstate)	50 Year	100 Year

2. BANKFULL DESIGN Yes No (Circle yes if at least one culvert has bankfull design) attach a list of culverts with bankfull designs
3. FLOOD PLAIN CULVERT(S) NEEDED? Yes No (Circle yes if at least one culvert has flood plain culverts) attach a list of culverts with flood plain culverts
4. DURABILITY SERVICE LIFE 75 Year attach a list of culverts with their durability service life if multiple culverts have different frequencies.
5. ABRASIVE SITE? Yes No (Circle yes if at least one culvert has an abrasive site) attach a list of culverts with their abrasive site assumptions if multiple culverts are different
6. ALLOWABLE HEADWATER BASED UPON (DR-06.300, Hydraulic Design):
a. Allowable increase in flow depth for the 5-year storm.
b. Shoulder elevation, ditch break-over, and elevation of development for the design storm.
c. Normal 100-year flow plus one foot for drainage areas greater than one square mile.

Additionally, sound judgment must be applied to the selection of the allowable headwater elevation and to the discharge with which the elevation is to be associated for any upstream control. For example, for nuclear power plants use a 500-year design storm. For houses, buildings with equipment, and other valuable property use a 100-year design storm. For farmland and barns use a 25-year design storm.

Note: Chapter 6 of KYTC Drainage Guidance Manual (Culverts and Headwalls) is currently being revised and should be released by the end of the year. Check KYTC Drainage website for updates.
7. METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (DR-04.400 Discharge Methods):
a. Rational Method for drainage areas 0 to 200 acres.
b. Regional Method (see USGS Water Resources Investigations Report 03-4180, "Estimating the Magnitude of Peak Flows for Streams in Kentucky for Selected Recurrence Intervals," 2003) for drainage areas 201 acres to 1000 square miles. Use Urbanization Technique for areas with greater than 15% development.
8. MAPPING USED TO DELINEATE DRAINAGE AREAS (DR-03.220, Drainage Area):
a. Drainage area < 50 acres: As long as it is legible, display drainage areas based on survey Digital Terrain Model.
b. 50 acres < Drainage area $<10,000$ acres: USGS Topographic Quadrangle Map.

Section A. Roadway Culverts - Continued

c. Drainage area $>10,000$ acres: 15 min. USGS quad sheets if appropriate, county maps may be used.
9. MANNING'S "n" USED FOR (DR-705-4, Pipe Roughness):

a.	Smooth pipe	0.012
b.	Corrugated pipe $\left(\frac{1}{2} 2^{\prime \prime} \times 2 \frac{1}{2} 2^{\prime \prime}\right.$ corrugations $):$	0.024

See Kentucky Standard Drawing RDI-035-01, "Coatings, Linings, and Pavings for Non-Structural Plate Pipe" for pipe coating and paving requirements.
10. ENTRANCE LOSS COEFFICIENT (K_{e}) (FHWA’s Hydraulic Design Series (HDS-5), Hydraulic Design of Highway Culverts, Table 12 - Entrance Loss Coefficients):

Coefficient K_{e}
a. Pipe, Concrete:
Projecting from fill, socket end (groove-end) 0.2
Projecting from fill, sq. cut end 0.5
Headwall or headwall and wingwalls Socket end of pipe (groove-end) 0.2
Square-edge 0.5
Rounded (radius = D/12) 0.2
Mitered to conform to fill slope 0.7
End-Section conforming to fill slope 0.5
Beveled edges, 33.7° or 45° bevels 0.2
Side- or slope-tapered inlet 0.2
b. Pipe or Pipe-Arch Corrugated Metal:
Projecting from fill (no headwall) 0.9
Headwall or headwall and wingwalls square-edge 0.5
Mitered to conform to fill slope, paved or unpaved slope 0.7
End-Section conforming to fill slope 0.5
Beveled edges, 33.7° or 45° bevels 0.2
Side- or slope-tapered inlet 0.2
c. Box, Reinforced Concrete:
Headwall parallel to embankment (no wingwalls)
Square-edged on 3 edges 0.5
Rounded on 3 edges to radius of $\mathrm{D} / 12$ or $\mathrm{B} / 12$ or beveled edges on 3 sides 0.2
Wingwalls at 30° to 75° to barrel
Square-edged at crown 0.4
Crown edge rounded to radius of $\mathrm{D} / 12$ or beveled top edge 0.2
Wingwall at 10° to 25° to barrel
Square-edged at crown 0.5
Wingwalls parallel (extension of sides) Square-edged at crown 0.7
Side- or slope-tapered inlet 0.2
11. MINIMUM COVER (top of pipe to subgrade) FOR (DR-06.240, Culvert Pipe):
a. 12 " from the top of pipe to subgrade with a desirable cover of at least 24 ".
12. MAXIMUM COVER FOR (DR-06.240, Culvert Pipe):
a. Circular pipe: 120 feet.

Section A. Roadway Culverts - Continued

b. Non-circular pipe: 10 feet.

See Kentucky Standard Drawings RDI-001-08 to RDI-012-02 and RDP-001-05 for specific cover heights.
13. OUTLET PROTECTION (DR 1005-1, Energy Dissipater Guidelines):

		Froude Number	Comment
a.	Culvert with Headwall	≤ 1.5	Place 25' - 30' Riprap
		>1.5 (Pipe D < 48")	Place 25' - 30' Riprap
		>1.5 (Pipe D > 48")	Design Riprap Transition
b.	Protruding Culvert	≤ 1.5	Place 25' - 30' Riprap
		>1.5 (Pipe D < 48")	Place 25' - 30' Riprap
		$1.5-3.0$	Design Riprap - Lined Basin
		> 3.0	Design SAF Dissipater

14. HEADWALL TYPE (Table 606-1, KYTC Standard Culvert Headwalls):

Section A. Roadway Culverts - Continued

Double \& Triple Pipe Culvert Headwalls	RDH-510, RDH-520, RDH-530	Circular	30 " to 48"	0°
Recast Box Culvert	RDH-1000, RDH-1005, Headwalls		RDH-1010, RDH-1015	Box

15. RESPONSIBILITIES:

a. See Kentucky Drainage Guidance Manual, DR-01.300, Pages 11-12.
16. SIZE LIMITS (DR-06.240, Culvert Pipe):
a. Cross Drain Pipes: 18 " to 144 "

Pipes less than 30 " shall not be used where fill heights over the top of the pipe are more than 30 feet. Larger sizes may be used in limited application after review by the Drainage Section and approval by the Director, Division of Highway Design.
b. Median Drain Pipes: 15 " to 30"

Section B. Storm Sewers

1. DESIGN STORM FREQUENCY (DR 706-1, Design and Check Storms):
a. Storm Sewer System 10 Year Design Storm
b. Pipes located in Sags 25 Year Design Storm

The 100-year storm is used as an aid in sizing pipe and to ensure that off-site impact is acceptable.
2. STORM SEWER HYDRAULICS (DR 707-7):
a. Convey the 10 -year storm at a depth equal to or less than 80% of the diameter or rise for pipes not located in a sag condition. If project restrictions will not allow this, design the system for pressure flow and ensure that the resulting hydraulic grade line elevations will not surcharge into the roadway.
b. Convey the 25 -year storm at a depth equal to or less than 80% of the diameter or rise for pipes located in sags which have no exit except through the pipe. If project restrictions will not allow this, design the system for pressure flow and ensure that the resulting hydraulic grade line elevations will not surcharge into the roadway.
c. Keep Hydraulic Grade Line elevations for the 100-year (check storm) below levels that will cause damage to adjacent property.
d. The above is based on a Manning's "n" pipe roughness of 0.012. See Kentucky Standard Drawing RDI-035-01, "Coatings, Linings, and Pavings for Non-Structural Plate Pipe" for pipe coating and paving requirements.
3. METHOD TO ESTIMATE DESIGN DISCHARGE (Q) (DR 704-2, Calculating Discharge to Inlets):
a. Rational Method
b. SCS Peak Flow Method
c. SCS Hydrographs Method

Section B. Storm Sewers - Continued

4. COEFFICIENT OF RUNOFF "C" FOR (DR-04.420, Table 4-2, Runoff Coefficients):

a.	All water-tight roof surfaces	$\underline{0.75-0.95}$
b.	Bituminous or concrete pavement	$\underline{0.80-0.95}$
c.	Traffic bound pavements	$\underline{0.70-0.90}$
d.	Gravel pavements	$\underline{0.35-0.70}$
e.	Impervious soils (heavy)	$\underline{0.40-0.65}$
f.	Impervious soils, with turf	$\underline{0.30-0.55}$
g.	Slightly pervious soils	$\underline{0.15-0.40}$
h.	Slightly pervious soils, with turf	$\underline{0.10-0.30}$
i.	Moderately pervious soils	$\underline{0.05-0.20}$
j.	Moderately pervious soils, with turf	$\underline{0.00-0.10}$

5. STORM SEWER OPEN CHANNEL DESIGN PROCEDURE:
a. Kentucky Drainage Guidance Manual, DR 706-5, Pages 4-6.
6. MINIMUM TIME TO INLETS (DR 704-2, Calculating Discharge to Inlets): 8 minutes

Inlet maximum spread is based on maximum intensity of $4 \mathrm{in} / \mathrm{hr} .8$ minutes is $\overline{\text { for storm sewer sizing. }}$
7. MINIMUM COVER OVER SEWERS (DR 707-5, Physical Pipe Requirements):
a. If under pavement: 12" from the tope of pipe to subgrade.
b. If not under pavement: 12" from the top of pipe to the top of ground.
8. MINIMUM VELOCITY FOR DESIGN FLOW __ 2 f.p.s. (DR 707-7, Storm Sewer Hydraulics)
9. MAXIMUM ACCESS POINT SPACING (DR 707-4):
a. 12 " -24 " pipe diameter: $\quad 300 \mathrm{ft}$.
b. 27" - 36" pipe diameter: $\quad \underline{400} \mathrm{ft}$.
c. $42 "-54$ " pipe diameter: $\quad 500 \mathrm{ft}$.
d. ≥ 60 " pipe diameter: 1000 ft .
10. MINIMUM PIPE SIZE (DR 707-5, Physical Pipe Requirements):
a. Not Under Traffic, lengths <25': 12"
b. Not Under Traffic, lengths ≥ 25 ': $15^{\prime \prime}$
c. Under Traffic, all lengths: 18", where flow from two or more curb or drop inlets is transported under the pavement to join the main trunk line on the opposite side of the road, or the inlet end of a pipe has a headwall or the pipe is projecting and subject to possible debris problems

Section C. Roadway Ditches

1. METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (DR-05.220, Normal Roadway Ditches):

a. Rational Method

2. DESIGN STORM FREQUENCY (DR-04.300, Table 4-1 Return Interval): \qquad 10 Year
3. DESIGN PROCEDURE:
a. Kentucky Drainage Guidance Manual, DR-05.340, Pages 20 to 22.
4. PERMISSIBLE SHEAR STRESS FOR VARIOUS PROTECTION MEASURES (from proposed Chapter 5 of KYTC Drainage Guidance Manual (Culverts and Headwalls)). Chapter 5 is currently being revised and should be released by the end of the year. Check KYTC Drainage website for updates.
a. Grass Lining (Seed or Sod) ${ }^{1}$
b. \quad Turf Reinforcing Mat Type 1^{2}
1.0 psf
.
6.0 psf
c. Turf Reinforcing Mat Type 2^{2}
8.0 psf
d. Turf Reinforcing Mat Type 3^{2}
10.0 psf
2.5 psf
5.0 psf
5.0 psf
35.0 psf
h. Channel Lining Class IA (Mattress Units) ${ }^{3}$

Notes:

1. Assuming Class C vegetation.
2. Assuming vegetated conditions.
3. Alternate methods as described in HEC-15 and Hydrain HYCHL documentation are also acceptable.

Turf Reinforcing Mat values are based on ECTC-FHWA Type 5A thru 5C and KYTC Design Memo 2-09. For Type IA linings, 35 psf is more appropriate for larger gabions and questionable for 6-inch D_{50} gabions. Based on HYCHL, 5 psf for Type IA linings is appropriate for 2-inch D_{50} gabions.
5. MANNING'S ROUGHNESS COEFFICIENTS "n" (DR-05.340, Table 5-4):

Depth Ranges

a.	Rigid:		Depth Ranges		
			$\underline{0-0.5 \mathrm{ft}}$.	$0.5-2.0 \mathrm{ft}$.	$\geq 2.0 \mathrm{ft}$.
		Concrete	0.015	0.013	0.013
		Grouted Riprap	0.040	0.030	0.028
		Stone Masonry	0.042	0.032	0.030
		Soil Cement	0.025	0.022	0.020
		Asphalt	0.018	0.016	0.016
b.	Unlined:	Bare Soil	0.023	0.020	0.020
		Rock Cut	0.045	0.035	0.025
c.	Temporary:	Woven Paper	0.016	0.015	0.015
		Jute Net	0.028	0.022	0.019
		Fiberglass Roving	0.028	0.022	0.019
d.	Straw w/ Net		0.065	0.033	0.025

Section C. Roadway Ditches - Continued

6. DITCH CONFIGURATION (DR-05, Channels and Ditches):
a. The geometry of a normal roadway ditches is determined by the category of highway. Normal roadway ditch dimensions for Interstate Highways and projects designed with full safety shall be an 18 foot ditch on a $6: 1$ side slope from the edge of the shoulder. This provides a useable ditch depth of 18 ".
b. A special ditch is designed to exceed the geometrics of a normal roadway ditch as described on a typical section. It may be deeper or wider or both deeper and wider than the prescribed geometrics for a roadway ditch.
c. A surface ditch is cut into the original ground and, more or less, parallels the toe of a fill to protect the fill from the surface water washing against it. A surface ditches has a 2 ' minimum flat bottom with $2: 1$ or $3: 1$ side slopes. A berm extends from the roadway fill slope to the surface ditch for 10 ' for a surface ditch with $3: 1$ side slopes or for 15 ' for a surface ditch with $2: 1$ side slopes.
7. LOCATION OF DROP INLETS IN CHANNELS (DR 707-3, Inlets in Channels):
a. Where the channel capacity is unable to contain the design storm due to either of the following situations:

- Depth in channel becomes deep enough to violate freeboard criteria for roadside channels.
- Depth in channel becomes deep enough to violate allowable shear stress criteria for the channel.
b. In sag locations created by the surrounding grade.
c. Where convenient outlet points are available to dispose of water.
d. Other considerations include:
- Locate inlets in channels in a manner that will maintain existing drainage patterns.
- Check headwater elevations over grates and in channels for the 100-year check storm to ensure damage to surrounding property is not occurring.
e. Types:
- DBI Type 1: Located on rural projects where traversal by a pedestrian or bicyclist is not anticipated.
- DBI Type 2: Wider version of Type 1 for 30 " and 36" pipes.
- DBI Type 3: Pedestrian and bicycle safe.
- DBI Type 4: Wider version of Type 3 for 30" and 36" pipes.
- DBI Type 7: For use with larger sized pipes.
- DBI Type 10: For use as a valley gutter with a paved ditch.
- DBI Type 14, DBI Type 15: Rural "yard drain" type inlets.

Section C. Roadway Ditches - Continued

8. MINIMUM LONGITUDINAL SLOPE (DR-05, Channels and Ditches): $\underbrace{}_{0.50 \%}$ desirable minimum

In areas where the surrounding terrain is flat enough to prevent the use of minimum grade, best engineering judgment should be used in determining the minimum slopes.
9. METHOD USED TO LOCATE EXISTING FARM TILE CROSSED BY HIGHWAYS? N/A
10. MINIMUM WIDTH OF DITCH LININGS:
a. Turf reinforcing mats \quad min $4.0 \quad \mathrm{ft}$. Refer to KYTC Design Memo 02-09
11. DESIGN FREQUENCY DEPTH (DR-05, Channels and Ditches):
a. Ditch shall be sufficient to carry the design flow without encroaching on the highway shoulder.
b. The depth of flow in surface ditches shall be further limited such that the design year discharge does not overtop the ditch bank.

Section D. Median Ditches

1. DITCH CONFIGURATIONS (DR-05.230, Median Ditches):
a. Median ditches are typically V-shaped.
2. WIDTH BETWEEN PAVEMENT EDGES (DR-05.230, Median Ditches):
a. Median ditch geometry is based on the median width established for the project.
3. SHEAR STRESS FOR VARIOUS PROTECTION MEASURES (DR-05.340, Table 5-3):
a. Grass Lining (Seed or Sod) ${ }^{1}$
b. \quad Turf Reinforcing Mat Type 1^{2}
\qquad
1.0 psf
6.0 psf
8.0 psf
10.0 psf
2.5 psf
\qquad
5.0 psf
35.0 psf

Notes:

1. Assuming Class C vegetation.
2. Assuming vegetated conditions.
3. Alternate methods as described in HEC-15 and Hydrain HYCHL documentation are also acceptable.

Turf Reinforcing Mat values are based on ECTC-FHWA Type 5A thru 5C and KYTC Design Memo 2-09. For Type IA linings, 35 psf is more appropriate for larger gabions and questionable for 6-inch D_{50} gabions. Based on HYCHL, 5 psf for Type IA linings is appropriate for 2-inch D_{50} gabions.

Section D. Median Ditches - Continued

4. METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (DR-05.230, Median Ditches):
a. Rational Method
5. LOCATION OF DROP INLETS IN CHANNELS (DR 707-3, Inlets in Channels):
a. Where the channel capacity is unable to contain the design storm due to either of the following situations:

- Depth in channel becomes deep enough to violate freeboard criteria.
- Depth in channel becomes deep enough to violate allowable shear stress criteria for the channel.
b. In sag locations created by the surrounding grade.
c. Where convenient outlet points are available to dispose of water.
d. Maximum Access Point Spacing (DR 707-4):

12" - 24" pipe diameter:	300 ft
27 " - 36" pipe diameter:	400 ft
42" - 54" pipe diameter:	500 ft
≥ 60 " pipe diameter:	1000 ft

6. TYPES OF MEDIAN INLETS (DR-702-6, Drop Box Inlets):
a. Drop Box Inlet Type 5 on projects where pedestrian or bicycle traffic is not anticipated.
b. Drop Box Inlet Type 6 on projects where pedestrian or bicycle traffic is anticipated.
7. MINIMUM LONGITUDINAL SLOPE (DR-05.230, Median Ditches): 0.50% desirable minimum In areas where the surrounding terrain is flat enough to prevent the use of minimum grade, best engineering judgment should be used in determining the minimum slopes.

Section E. Drainage for Curbed Pavements

1. CONTROLS TO DETERMINE INLET SPACING (DR 706-1, Design and Check Storms):
a. Design inlet spacing for maximum spread based on maximum intensity of $4 \mathrm{in} / \mathrm{hr}$.
b. Design storm frequency $\quad 10$ Year
b. Check storm frequency $\quad 25$ Year (where the storm sewer is the only outlet)
2. METHOD TO DETERMINE TIME TO FIRST INLET (DR 704-2, Calculating Discharge to Inlets):
a. Sum of overland flow and gutter flow.
b. Minimum time of 8 minutes shall be used for storm sewer pipe design.
3. ALLOWABLE SPREAD FOR PAVEMENT INLETS (DR-707-1, Table 707-1):
a. Interstate or Parkway All Speeds _ 0 feet of encroachment into driving lane
b. Non Interstate or Parkway $(\mathrm{ADT}>1500)>45 \mathrm{mph} \ldots 3$ feet of encroachment into driving lane $<45 \mathrm{mph} \quad 6 \quad$ feet of encroachment into driving lane
c. Non Interstate or Parkway (ADT<1500) All Speeds 6 feet of encroachment into driving lane

Section E. Drainage for Curbed Pavements - Continued

4. MANNING'S "n" USED FOR (DR 705-4, Table 705-2 Manning's n Coefficients):
a. Asphalt $\quad \underline{0.013-0.017}$
b. Brick $\underline{0.012-0.018}$
c. Concrete $\quad \underline{0.011-0.020}$

The standard Manning's"n" used for design is 0.015.
5. TYPES OF INLETS (DR 702-5, Curb Box Inlets):
a. Curb Box Inlet Type A (Includes Manhole Access) - Pipe vault expands away from center line.
b. Curb Box Inlet Type B (Does Not Include Manhole Access) - Pipe vault expands toward center line. Typically 10' curb openings are used. Curb Box Inlets Type B are used for bridge end drainage, in urban areas where a narrow inlet is needed because of existing utilities and limited right of way behind the inlet, and in storage lanes of narrow raised medians.
c. Curb Box Inlet Type F - used with standard curb shape in situations where very little capacity is needed or a lack of space prevents use of larger inlets.
d. Median Barrier Box Inlet - used with median barrier
6. INLET DRAWDOWN BELOW NORMAL GUTTER:
a. Curb Box Inlet Type A: $\quad \underline{2}$ " minimum
b. Curb Box Inlet Type B: 4" minimum
c. Median Barrier Box Inlet: 4" minimum

Form LD-35
Revised January 2006

GENERAL PROJECT INFORMATION		
Hamilton	I-71/I-75	$0.00 / 0.22$
County	Route	Section
	(Attach Typical Section)	

AFFECTED ROADWAYS:	Route	Average Daily Traffic	Rural / Urban
INTERSTATE OR OTHER L/A FACILITIES	I-71, I-75, U.S. 50	I-75 (Bridge to Ezzard Charles) 79,500 ADT (2035) I-75 (Ezzard Charles to Bank St) 89,160 ADT (2035) I-75 (Bank St. to Western Hills Via.) 118,840 ADT (2035) I-71-129,220 ADT (2035) U.S. 50-45,260 ADT (2035)	Urban
ARTERIALS AND COLLECTORS	West $3^{\text {rd }}$ St., West $5^{\text {th }}$ St., West $7^{\text {th }}$ St., W $9^{\text {th }}$ St., W $6^{\text {th }}$ St. Viaduct, Western Ave., Winchell Ave., Western Hills Viaduct, Spring Grove Ave., Central Ave. Parkway	$\begin{aligned} & 5^{\text {th }} \text { St. - 12,910 ADT (2035) } \\ & 6^{\text {th }} \text { St. }-4,860 \text { ADT (2035) } \\ & 7^{\text {th }} \text { St. }-17,020 \text { ADT (2035) } \\ & 9^{\text {th }} \text { St. - 10,280 ADT (2035) } \end{aligned}$	Urban
LOCALS	Linn St., Gest St., John St., Ezzard Charles, Bank St., Harrison Ave., Bank St., Findlay St.	Linn St. - 10,440 ADT (2035) Gest St. - 7,430 ADT (2035) Ezzard Charles - 3,500 ADT (2035) Findlay St. - 3,400 ADT (2035) Bank St. - 6,290 ADT (2035)	Urban
Clear zone	30 ft		

PIPE POLICY:

The Pipe Policy of ODOT will be used for this project. (See Section 1002 for additional information)
If a policy other than ODOT's is being used, the following material types are permitted:
In addition to the ODOT policy, the City of Cincinnti "Supplement to State of Ohio Department of Transportation
Construction and Material Specifications" (January 1, 2008) should be followed.
(Please attach a copy of the written pipe policy. In lieu of a written policy, documentation of locally funded construction practices may be provided)

POST CONSTRUCTION BMP POLICY:

The Post Construction BMP Policy of ODOT will be used for this project (The BMP Criteria that is current and valid at the beginning of Step 7 shall be used. Later revisions may be applied in future steps). In locations where the highway drainage is discharged directly to a combined sewer system operated by The Metropolitan Sewer District of Greater Cincinnati, detention design will be required per MSD's regulations in place at the beginning Step 7 of the PDP. Other BMP will not be required for the areas tributary to those outfalls. If a policy other than ODOT's is being used, the following BMP's are permitted:

N/A

PROJECT SPECIFIC INFORMATION AFFECTING DRAINAGE:

The proposed work on I-71/I-75 consists of re-aligning the interstates to a new bridge to the West of the existing Brent Spence Bridge. Drainage impacts will be to the local roads and ramps which need to be re-aligned and/or widened to accommodate increased traffic.

Section A. Roadway Culverts (Type A Conduits)

1. DESIGN STORM FREQUENCY (1004.2):
a. Mainline 50 Year
b. Crossroads $25 \& 10$ Year
2. BANKFULL DESIGN Yes No (Circle yes if at least one culvert has bankfull design) attach a list of culverts with bankfull designs
3. FLOOD PLAIN CULVERT(S) NEEDED? Yes No (Circle yes if at least one culvert has flood plain culverts) attach a list of culverts with flood plain culverts
4. DURABILITY SERVICE LIFE 75 Year attach a list of culverts with their durability service life if multiple culverts have different frequencies.
5. ABRASIVE SITE? Yes No (Circle yes if at least one culvert has an abrasive site) attach a list of culverts with their abrasive site assumptions if multiple culverts are different
6. MAXIMUM ALLOWABLE HEADWATER FOR DESIGN STORM (1006.2):
a. $\quad 2$ feet below the near, low edge of the pavement for drainage areas 1000 acres or greater and 1 foot below for culverts draining less than 1000 acres.
b. $\quad 2$ feet above the inlet crown of the culvert or above a tailwater elevation that submerges the inlet crown in flat to rolling terrain.
c. 4 feet above the inlet crown of a culvert in a deep ravine.
7. METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (1003):
a. Rational Method.
b. USGS Water Resources Investigations Reports 93-135 (for ungaged small urban streams in Ohio) or 89-4126 (for rural unregulated streams in Ohio) should be used within the limits prescribed in each of the reports.
8. SCALE OF TOPOGRAPHIC MAPPING USED TO DELINEATE DRAINAGE AREAS (1101.1):
a. USGS mapping (7.5 minute quadrangle).
b. For smaller areas, or where using the rational method, use aerial topography (low-flight mapping), and smaller scale maps ($1 "=50$ ' to $1 "=800$ ') may be more appropriate.
9. MANNING'S "n" USED FOR (1105.6.5):
a. \quad Smooth pipe $\quad 0.012$
b. Corrugated pipe:

$2-{ }^{2} / 3^{\prime \prime} \times 1 / 2^{\prime \prime}:$	Full flow	$\underline{0.0250 \text { to } 0.0225}$
$3 " \times 1 ":$	Full flow	$\underline{0.0281 \text { to } 0.0260}$
$6^{\prime \prime} \times 2$ ":	Full flow	$\underline{0.0332 \text { to } 0.0300}$

Section A. Roadway Culverts - Continued

10. ENTRANCE LOSS COEFFICIENT (k_{e}) (1105.6.6, table 1105-1):
a. Corrugated pipe:

$$
\text { HW-2.1 Headwall } \quad 0.9
$$

Full Headwall 0.25 (beveled)
b. Smooth Concrete pipe
HW-2.2 Headwall _ 0.2
Full Headwall \qquad 0.2 \qquad (grooved end)
d. Box Shape Full Headwall 0.4 .
11. MINIMUM COVER (top of pipe to subgrade) FOR (1008):
a. Rigid pipe: $9 "$ from the top of pipe to top of sub-grade or finish grade for pipe not under pavements. Absolute minimum of 15 " from top of pipe to pavement surface.
b. Flexible pipe: 12 " from the top of pipe to top of sub-grade, 18 " from the top of pipe to top of sub-grade or finish grade for pipe not under pavements
12. MAXIMUM COVER FOR (1008):
a. \quad Rigid pipe: As per L\&D Section 1008.2.2 \& Figures 1008-10 to 1008-14.
b. Flexible pipe: As per L\&D Section 1008, Tables 1008-1 to 9 \& 1008-15 to 21.
13. MAXIMUM ALLOWABLE CULVERT OUTLET VELOCITY (1002.2.2) :
a. Bare earth channel 5 f.p.s.
b. Rock channel protection 20 f.p.s.
c. Use energy dissipaters for velocities in excess of 20 f.p.s.
14. HEADWALL TYPE (1106.2):
a. Half height headwalls: HW-2.1 and HW-2.2
b. Full height headwalls: HW-1.1
15. CONTACT WILL BE MADE WITH COUNTY ENGINEER TO ESTABLISH:
a. Ditch cleanout grades and watersheds.
b. County Engineer culvert approval form LD-33.
16. MINIMUM PIPE SIZE (1002.3.1, Figure 1002-1):
a. Freeway or limited access facility: 24 " to 42 "
b. Other highways: 15" to 36"

Section B. Storm Sewers (Type B \& C Conduits)

1. DESIGN FREQUENCY (Just Full) 10 _ YEAR (1104.4.1)
2. HYDRAULIC GRADIENT SHALL NOT EXCEED (1104.4.2):
a. 12" inches below edge of pavement for $\quad 25$ year frequency storm.
b. Pavement catch basin grate or lip of inlet for $\quad 25$ year frequency storm.
c. A point in a depressed pavement sag that would result in an impassible highway for a year frequency storm.
d. Other: Storm sewers for all highways shall satisfy a 50-year check to preclude flooding of buildings or extensive flooding of private property.
e. The above is based on:
i. A pipe roughness " n " $=\underline{0.015}$ for pipe sizes 60 " and under and $\quad 0.013$ for larger sizes.
ii. The intensity "i" used to check discharge for a 25-year frequency shall be the same for all sewer runs as calculated for the last, or downstream run in a continuous sewer system.
3. METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (1003):
a. Rational Method
4. COEFFICIENT OF RUNOFF "C" FOR (1101.2.3):
a. Pavement and paved shoulders \qquad 0.9
b. Berms and slopes (4:1 and flatter) \qquad 0.5
c. \quad Berms and slopes (steeper than $4: 1$) \qquad
d. Contributing areas:

Residential_ $\begin{aligned} & \text { 0.3-0.7 } \\ & \text { Woods } \quad 0.3\end{aligned} \quad$ Cultivated 0.3-0.6
5. METHOD USED TO DETERMINE TIME TO FIRST CATCH BASIN OR PAVEMENT INLET (1101.2):
a. Location and Design Manual, Volume II Section 1101.2.2
b. Location and Design Manual, Volume II Figure 1101-1
6. MINIMUM TIME TO (1104.4.4):
a. Ditch catch basin 15 minutes
b. Pavement inlet or catch basin 10 minutes

Section B. Storm Sewers (Type B \& C Conduits) - Continued

7. MINIMUM COVER OVER SEWERS (1104.2.1):
a. Rigid pipe:
i. Type B conduit (under pavement or paved shoulder): 9" from top of pipe to bottom of pavement sub-base. 15" from top of rigid pipe to pavement surface (absolute).
ii. Type C conduit (beyond pavement or paved shoulder): \qquad
b. Flexible pipe:
i. Type B conduit (under pavement or paved shoulder): 12" from top of pipe to bottom of pavement sub-base. 24 " from top of flexible pipe to the pavement surface (absolute).
ii. Type C conduit (beyond pavement or paved shoulder): \qquad
8. DESIRABLE MINIMUM VELOCITY FOR DESIGN FLOW _ 3 f.p.s. (1104.2.1).
9. MAXIMUM LENGTH BETWEEN MANHOLES OR SUITABLE CLEANOUT POINTS (1104.2.2):
a. Under 36"diameter: 300 ft .
b. 36" - 60" diameter: $\quad 500 \mathrm{ft}$.
c. Over 60" diameter: 750 ft . to 1000 ft .
10. MINIMUM PIPE SIZE UNDER PAVEMENT (1104.4.6):
a. Freeway or limited access facility \qquad
b. Other highways 12 "
11. PROCEDURE TO FOLLOW WHEN EXISTING PRIVATE DRAINS ARE CUT BY PROPOSED

SEWERS OR DITCHES: Furnish District Deputy Director with names and addresses of affected property owners prior to drainage review so that appropriate provision of directive 22A can be followed.

Section C. Roadway Ditches

1. METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (1003):
a. Rational Method.
b. USGS Method.
2. DESIGN FREQUENCY TO DETERMINE (1102.3.1 or 1102.4):

ADT >2000:
a. Depth of flow determination $\quad 10$ year
b. Shear Stress determination (for protection and width of protection) \qquad 5 year

ADT <2000:
c. Depth of flow determination \qquad 5 year
d. Shear Stress determination (for protection and width of protection) \qquad year

Section C. Roadway Ditches - Continued

3. METHOD USED TO DETERMINE TIME OF FLOW TO DITCH (1101.2):

See Location and Design, Volume II. Section 1101.2.2 and Figure 1101-1. (15 minute minimum)
4. ALLOWABLE SHEAR STRESS FOR DITCH LINING (1102.3):

Permanent Ditch Protection:
a. Seed lining $\quad 0.40$ psf.
b. Sod or other temporary ditch protection 1.0 psf.
c. Turf Reinforcing Mat (SS836), Type $1 \quad 2.0 \quad$ psf.
d. Turf Reinforcing Mat (SS836), Type $2 \ldots 3.0$ psf.
e. Turf Reinforcing Mat (SS836), Type $3 \ldots 5.0$ psf.
f. RCP, Type B $\quad 6.0$ psf.
g. RCP, Type C $\quad 4.0$ psf.
h. RCP, Type D $\quad 2.0$ psf.

Temporary Ditch Protection (Item 670):
a. Mat, Type A $\quad 1.25$ psf.
b. Mat, Type B $\quad 1.50$ psf.
c. Mat, Type C 2.00 psf.
d. Mat, Type E $\quad 2.25$ psf.
e. Mat, Type F 0.45 psf.
f. Mat, Type G $\quad 1.75$ psf.

Tied Concrete Block Mat (Item 601)
a. Type $1 \xrightarrow{3.0}$ psf.
b. Type $2 \ldots 5.0$ psf.
c. Type $3 \ldots 7.0$ psf.
5. MANNING'S "n" USED FOR (1102.3):
a. Seed lining \qquad
b. Sod, jute, or other temporary linings \qquad
c. Turf reinforcing mats \qquad
d. Tied Concrete Block Matting \qquad

Section C. Roadway Ditches - Continued

e. Rock channel protection $\quad 0.06$ (ditches), 0.04 (large channels)
6. DITCH CONFIGURATION (1102.2):
a. 20^{\prime} radius for roadway, with $16 "$ inch minimum depth
b. 20 ' radius for toe of embankment, with $\quad 12$ " inch minimum depth
7. TYPE OF DITCH CATCH BASIN (1102.3.4):
a. CB-4, CB-5, CB-8
b. CB 2-2-A located in rural areas, outside of the clear zone or behind the guardrail.
c. \quad CB 2-2-B used where minor, non-clogging flows are involved such as yard sections and small triangular areas at bridge terminals.
8. MINIMUM LONGITUDINAL SLOPE OF DITCHES IN CUT SECTIONS (1102.1):
a. $\quad 0.50 \%$ desirable minimum
b. $\quad 0.25 \%$ absolute minimum
9. METHOD USED TO LOCATE EXISTING FARM TILE CROSSED BY HIGHWAYS?
a. Field inspection / aerial photos.
b. Inquiry of property owners.
c. County and District Engineers.
d. Department of Natural Resources / Soil Conservation Service.
10. MINIMUM WIDTH OF DITCH LININGS (1102.3.1):
a. \quad Sod $\quad 7.5 \mathrm{ft} . \quad \mathrm{ft}$
b. Temporary linings $\quad 7.5 \mathrm{ft} . \quad \mathrm{ft}$.
c. Turf reinforcing mats $\quad 7.5 \mathrm{ft} . \quad \mathrm{ft}$.
11. DESIGN FREQUENCY DEPTH SHALL NOT EXCEED (1102.3.1):
a. An elevation of 1 ' below the edge of pavement for the design discharge.
b. The depth of flow in toe of slope ditches shall be further limited such that the design year discharge does not overtop the ditch bank.

Section D. Median Ditches

1. DITCH CONFIGURATIONS (1102.2.3):
a. Depressed Median: 8' or 4' rounding, depending on the width of the median.
b. Type of barrier: B, B1, C1, D
2. WIDTH BETWEEN PAVEMENT EDGES_21 to 50 f
3. ALLOWABLE SHEAR STRESS FOR DITCH LINING (1102.3):

Permanent Ditch Protection:
a. Seed lining $\quad 0.40$ psf.
b. Sod or other temporary ditch protection 1.0 psf.
c. Turf Reinforcing Mat (SS836), Type $1 \ldots 2.0$ psf.
d. Turf Reinforcing Mat (SS836), Type $2 \ldots 3.0$ psf.
e. Turf Reinforcing Mat (SS836), Type $3 \ldots 5.0$ psf.

Temporary Ditch Protection (Item 670):
a. Mat, Type A 1.25 psf.
b. Mat, Type B _ 1.50 psf.
c. Mat, Type C 2.0 psf.
d. Mat, Type E 2.25 psf.
e. Mat, Type F 0.45 psf.
f. Mat, Type G _ 1.75 psf.

Tied Concrete Block Mat (Item 601)
a. Type $1 _$3.0 \quad psf.
b. Type $2 _5.0$ psf.
c. Type $3 \quad 7.0$ psf.
4. METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (1101.2):
a. Rational Method
5. CATCH BASIN SPACING WILL BE DETERMINED BY HYDRAULIC ANALYSIS USING (1102.3.4):
a. $\quad 5$ year frequency and " n " $=\quad 0.03$ for velocity
b. $\quad 10$ year frequency and " n " $=\quad 0.03$ for depth
c. Controls:
i. Design frequency depth shall not exceed:

Section D. Median Ditches - Continued

(1) An elevation of 1 ' below the edge of pavement for the design discharge.
d. Catch basin spacing, depressed median, fill section:

	Median Width	84'	60^{\prime}	40^{\prime}
i.	Desirable maximum	1250 ft.	1000 ft.	800 ft.
	Absolute maximum	1500 ft.	1250 ft.	1000 ft.

6. TYPE OF MEDIAN CATCH BASIN OR INLET (1102.3.4):
a. Standard CB No. 4 for depressed medians wider than 40^{\prime}.
7. MINIMUM LONGITUDINAL SLOPE OF DEPRESSED EARTH MEDIAN:
a. \quad Slope at 0.50% desired minimum 0.25% absolute minimum.

Section E. Drainage for Curbed Pavements

1. CONTROLS FOR THE DETERMINATION OF INLET OR CATCH BASIN SPACING (1103):
a. Design storm frequency $\quad 10$ year
b. Check storm frequency 50 year (for underpasses or depressed roadways where the storm sewer is the only outlet)
c. METHOD USED TO DETERMINE TIME TO FIRST CATCH BASIN OR PAVEMENT INLET:
i. Overland flow and Gutter Flow.
ii. Absolute minimum time of 10 minutes shall be used.
d. Maximum spread of flow into traveled lane: \qquad ft. (table 1103-1)

Outside lane width greater than 12 feet: $0-8 \quad \mathrm{ft}$. (table 1103-1)
Total allowable spread on pavement: $\quad 0-8 \quad \mathrm{ft}$. (table 1103-1)
e. Maximum depth of flow at curb \qquad 5 in.
f. Manning's " n " for:
i. Reinforced concrete pavement $\quad 0.015$
ii. Asphaltic concrete pavement $\quad 0.015$
iii. Paved shoulders 0.015

2. TYPE OF INLET OR CATCH BASIN PROPOSED FOR (1103):

a. Continuous grades: Inlet No. 3, CB. No. 3, 3A, CB-2A-XX (where XX is length of opening), CB-6.

Section E. Drainage for Curbed Pavements - Continued

b. Sags: Inlet No. 3, CB No. 3, 3A .
3. INLET LIP OF CURB OPENING INLET WILL BE DEPRESSED __ 2 INCHES BELOW NORMAL GUTTER.
a. A local depression of 2 inches will be used to determine spacing of combination grate and curb opening catch basins or pavement inlets for a curb pavement section.
b. A local depression of $\quad 1 / 2$ inches will be used to determine spacing of combination grate and curb opening catch basins for a combination curb and gutter section.

Appendix E Utility Coordination

To "Jeffrey Ballinger" jballinger2@cinci.rr.com, Stefan Spinosa/Contracts/D08/ODOT
06/05/2009 10:49 AM
cc Brenda Russell/Construction/D08/ODOT
Subject Re: HAM-71/75-0.00/0.22 PID75119Link

Thanks Jeff, for now we are looking for an estimate.

Stefan, Please see the below email from AT\&T Fiber Optic.

Rick Anton, TTS
ODOT, District 8 Utility Coordinator
505 South State Route 741
Lebanon, Ohio 45036-9518
Direct Phone Line: 513.933.6624
Fax: 513.933.8252

"Jeffrey Ballinger" < iballinger2@cinci.rr.com>

06/01/2009 03:28 PM

To Rick.Anton@dot.state.oh.us
cc
Subject HAM-71/75-0.00/0.22 PID75119

Rick
at\&t is located at 358 Gest Street Part of the impacted Line went over the at\&t office location at\&t has a lease at this location for 20 Years broken down by 5 year renewable They think the next renew date 12/21/11
at\&t fiber on the property are covered under the lease The fiber in the road right of way are there by permit The majority of the core cable in this area was just placed in 2007 and 2008 areas was placed joint with the water main the city was placing
Did not know if at this time if you needed this on a 75-1 or just a estimate for a budget at\&t is looking into replacement of the existing core cables placed in 1988 so if this goes I will be in contact with you to work around these projects
The total is $\$ 33,685,000$
If you need anything else just call 614-216-1160
Thanks Jeff

Capital Driver	20XX	Burden	Totals	Comments
Building Purchase	\$1,500	\$0	\$1,500	Replaces the current POP building.
Building Renovation	\$750	\$0	\$750	Capital to renovate the new building to meet network central office standards.
DC Power/Alarms	\$700	\$27	\$727	DC power and alarm equipment.
Telemetry	\$90	\$3	\$93	Telemetry equipment.
NSDNET	\$80	\$3	\$83	NSDNET equipment.
Sync	\$160	\$6	\$166	Sync equipment.
Signaling	\$120	\$5	\$125	SS7 signaling equipment.
Core Transport	\$16,017	\$610	\$16,627	Core transport in support of ULH and etc.
Core STE/MUX	\$394	\$15	\$409	Core multiplex and service terminating equipment in support of POP function.
Core OSP	\$750	\$29	\$779	Core OSP in support of ULH migration and POP to POP network architecture.
Metro Titan/COE	\$2,000	\$76	\$2,076	Metro COE equipment in support of local services.
Metro Switch	\$2,000	\$76	\$2,076	Metro switch in support of local services.
Metro OSP	\$2,170	\$83	\$2,253	Metro OSP in support of local rings
Metro Transport	\$5,800	\$221	\$6,021	Metro electronics to support fiber/rings
	\$0	\$0	\$0	
	\$0	\$0	\$0	
	\$0	\$0	\$0	
	\$0	\$0	\$0	
Totals	\$32,531	\$1,154	\$33,685	

[^0]August 4. 2009
Mir. Rick Anton
District 8 Utility Coordinator
Ohio Department of Transportation
505 South S.R. 741
Lebanon, Ohio 45036

Dear Mr. Anton:
This letter is in regards to your letter dated March 2, 2009 concerning the potential utility impacts for the HAM-71/75-0.00/0.22 PID 75119 project. I have determined the cost of each item number
 conduit, manholes and pull-boxes. Item number 2-20 would require us to place 2 new duct systems along $3^{\text {rd }}$ Street from Vine Street to west of I-75 (Cost $\$ \mathbf{1 , 1 7 5 , 0 0 0}$). Item number 2-24 would require us to place a new duct system under $\bar{I}-75$ from W. $8^{\text {th }}$ Street to W. Court Street (Cost $\$ 87,000$). Item 2-27 would require us to place a new duct system under I-75 from the intersection of W. Court and Linn Street over to Freeman Avenue (Cost \$284,000). Item 3-2 would require us to place a new duct systern under I-75 from Winchell Avenue (near old manhole 335) headed west to Wade Avenue west of Western Avenue (near manhole 9389). then north to the intersection of Dalton Street and Western A renue (Cost S42,000). Lem number 3-5 would require us, to place a new duet system from Poplar and W'incheli under l-75 over Western Avenue north of Poplar (Cost $\$ 32,000$). Item $3-12$ would require us to place a new duct system from the intersection of Spring Grove and Queen City under]-75 over to McMillian solith of Rush Street (near manhole 6635), (Cost $\$ 159,000$). All facilities for our main duct system are thele by permit.

The aforementioned costs are estimated and do not include any lieldwork or intensive records research to determine exactly what is required. Costs could change once preliminary plans are issued.

A copy of this letter has been sent to John Webster (566-8055) of our West District Office to determine the cable and splicing costs.

Sincerely,

Mark Conner
Specialist - Conduit Engineering

cc: John Webster

File

West End Substation Project Scope

West End Substation Replace the East Yard

Jat. 2012

Civil Scope:
Install 30 tower foundations for the new East yard
Install 9 breaker foundations in the new East yard
Install 2 breaker foundations in the West yard for CB 947 and CB 953
Install ground mat in the new substation area
Install crushed stone surface in the new substation area
Install foundation for a new building addition extending 30ft north of the existing building running from column row 3 to column row 11

Install a steel support structure and the new building addition floor which will be at elevation 522'-0"

Install the new steel building approximately $30 \mathrm{ft} \times 144 \mathrm{ft}$
Structural Scope:
Install 30-4ft $\times 4 \mathrm{ft} \times 65 \mathrm{ft}$ tower columns
Install 44-4ft $\times 4 \mathrm{ft} \times 36 \mathrm{ft}$ beams
Install 42-2ft $\times 4 \mathrm{ft} \times 36 \mathrm{ft}$ beams
Install 5-4ft $\times 4 \mathrm{ft} \times 16 \mathrm{ft}$ beams
Install 22-2000A 115kV breaker line and bus disconnect switches
Install 2 motor operated line disconnects with a manual ground switches for F1385 \& F1389
Install 11-138kV CCVTs (F1286, F1587, bus 1,2 \& 4, TB12 \& 13)
Install wave traps for F1286 and F1587
Install 15 surge arresters for the overhead and cable circuits
Install 11 structures for CBs similar to the structure for CB 949
Install 11-3000A 138kV 40kA CBs with 6 sets of 2000/5 CT's
Install a stairs and platforms to provide access to CBs and equipment
Install bundled 954MCM AL cable from the East tower to the West tower for a bus ties

Install 5 in . AL tube main bus and 4in. AL tube bus between breakers
Install cap and pin equivalent high creep insulators for the buses Install a cable tray system to run new control cable from the sub to the new 138 kV relay room

Electrical Scope:

Install dual PVD bus differential packages for 138 kV bus 2, 3, 4 and 5
Install 4-138kV bus 4 and bus 5 differential test switch cabinets
Install SEL451 control and breaker failure relays for the 11 new breakers and 5 existing breakers Install 3 dual SEL421 relay packages for F1286, F1587 and F5985

Install 2 SEL421/SEL311L relay packages for F1385 and F1389
Install an annunciator for the new 138 kV relay room
Install a synchronizing panel
Install a RuggedCom switch
Install a D20 RTU for the transmission substation
Install a DFR for the transmission substation
Install 2 new dc distribution panels in the new 138kV relay room; connect 1 to each existing battery

Install control cable from the new substation equipment to the new 138 kV relay room
Remove the existing 138 kV line relays and the bus 1 and 2 relays located in the existing control room

West End Substation Reconnect the 13kV Transformers and Buses

Civil Scope:

Install 3 new transformer foundations to elevation 513'-0" that incorporate oil containment and foundations for steel deadend structures and masonry firewalls (similar to existing at bank 7 \& 8) including foundations for grounding banks and low voltage bus

Install foundations for 15 kV cable bus from the 3 new transformers to the new switchgear Install oil containment and foundations for steel deadend structure and masonry firewalls for old TB9 now new TB11

Structural Scope:
Install 2-138kV motor operated air break switches for new TB 12 and TB13
Relocate ABS950 for TB 10
Install 4 deadend towers for TB10, TB11, TB12 and TB14
Relocate TB10 and GRD TB 10 to the new foundation
Remove TB9 and Grd TBs 9-1 and 9-2
Install 3 new 132-13.0kV 67MVA LTC transformers TB11, TB12 and TB14 with new GRD banks
Install 3000 amp 15 kV cable bus from the 4 - 67MVA transformers to the new switchgear
Install new switchgear in the new building; re-use the 3000 amp 15 kV drawout breakers from buses $11,21,31$ and 41 in the new cells

Install 2000 amp 15 kV cable bus from the new switchgear to the top floor switch house for bus ties 10-12-17, 20-22-16, 30-32-19 and 40-42-15

Install 2000 amp cable bus and re-use the cable tray from CB 106 and CB 305 for new cable for bus ties 10-19 and 17-30

Install 2000 amp cable bus and re-use the cable tray from CB 206 and CB 405 for new cable for bus ties 17-20 and 19-40

Install 2000 amp cable bus for bus ties 12-16, 16-42, 15-22 and 15-32
Install control cable from the transformers to the new 138 kV relay room
Remove the reactors from the old 12-22 bus tie and the 32-42 bus tie
Remove the equipment for buses $11,21,31$ and 41 in the West switch house and the tie cables to the upper floor switch house

Electrical Scope:

Install 4 dual TPU relay packages for the 4-67MVA transformers
Install 4 SEL551 protection packages for the 4 GRD transformers
Install PVD differential and SEL487 differential bus relays packages for the 4 new switchgear buses

Install PVD differential and SEL487 differential bus relay packages for the 10-19, 12-16, 15-22, $15-32,16-42,17-20,17-30$, and the $19-40$ bus ties

Re-connect and re-use the CO-7/ CO-8 CO-11 relays for the 10-12-17, 15-40-42, 16-20-22, and 19-30-32 bus ties

Install a PLC to control the LTCs and the capacitor breakers

West End Substation Reconfigure the 13kV System

Demolish the West switch house after removing the 12 kV breakers and disconnecting banks 9 and 10

Reroute circuit 1385 and 1389 to the new East yard
Build a manhole around F1385 and F1389 in Augusta St East of the existing Brent Spence bridge Install 1600 ft . of 8 in . pipe from the manhole to the new East yard cable termination locations Install 2000MCM cable and cable terminations for each circuit Join the existing cable and pipe to the new cable and pipe in the new manhole Perform HV acceptance testing of the cable circuits

Reroute circuit 1286 and 1587 to the new East yard
Remove tower 101 for the new bridge, Erect (2) double-circuit heavy-angle structures to reroute F1286 and F1587. Routes are over and about buildings. Conductors are similar to existing conductor. Estimate: (2) structures, (2) foundations, (2000')-159kCM ACSR 12/7static, (6000') - 795kCM ACSR 45/7.

Charles Substation Replace Circuit 1385 and 1389 Relays

Replace the F1385 HCB/LCB relay schemes with a SEL421/SEL311L relay package
Replace the F1389 dual LCB relay package with a SEL421/SEL311L relay package

Mitchell Ave Substation Replace Circuit 1286 Relays

Replace the F1286 relays and carrier equipment with a standard dual SEL421/SEL451 relay package

Crescent Substation Replace Circuit 1587 Relays

Replace the F1587 relays and carrier equipment with a standard dual SEL421/SEL451 relay package

Wilder Substation Replace Circuit 5985 Relays

Replace the F5985 relays and carrier equipment with a standard dual SEL421/SEL451 relay package

West End Substation Remove the 138kV East Yard

Remove the oil from the equipment
Remove the existing East 138 kV substation equipment and structures, including TB's $7 \& 8$ and the 138 kV breakers

Abandon the foundations in place; they will be removed as part of the site remediation
pretiniroy fry - is ll do separate Pen

West End Substation Replace the East Yard
West End Substation Reconnect the 13kV Transformers and Buses
West End Substation Reconfigure the 13kV System
Reroute circuit 1385 and 1389 to the new East yard
Reroute circuit 1286 and 1587 to the new East yard
Charles Substation Replace Circuit 1385 and 1389 Relays
Mitchell Ave Substation Replace Circuit 1286 Relays
Crescent Substation Replace Circuit 1587 Relays
Wilder Substation Replace Circuit 5985 Relays
West End Substation Remove the 138kV East Yard

Pes fF Estinatp-What in ore
summat 2011

wilt e a spate
\$12,000,000
\$13,500,000
\$ 250,000
\$ 2,750,000
\$ 1,050,000
\$ 500,000
\$ 250,000
\$ 250,000
\$ 250,000
$\$ 350,000$
\$31,150,000
set retrace pithos.

"Schwiers, Thomas" <Thomas.Schwiers@cincinnat i-oh.gov>
03/09/2009 11:46 AM

```
To <Rick.Anton@dot.state.oh.us>
    cc "Franklin, Rob" <Rob.Franklin@cincinnati-oh.gov>
    bcc
```

Subject HAM_71/75-0.00/0.22 PID 75119

Rick:
After receiving your letter of March 2, 2009 I put together some cost per foot to relocate some of our sewer lines. I thought this might be the best way to go given that there is no definite alignment set which would tell us the footage we need to relocate along with the manholes. In many cases we may be able to relocate a manhole to provide access to our sewer rather than relocating the line.

Tom Schwiers
\square

244-5187 $175 \% 71$ Widening.doc

Response for HAM -71/75-0.00/0.22 PID 75119

In general, it may be easier to modify the existing manholes leaving the sewers were they are than to try and relocate them. Using Table 30 provided in your letter of March 2, 2009 I wish to offer the following:

Item 2-9: The 72 inch sewer is our Mill Creek East Branch Interceptor sewer which runs 75% full on dry days. Originally this sewer was installed by tunneling. To relocate this sewer would cost $\$ 3000.00$ per lineal foot with shafts costing $\$ 750,000.00$ per shaft. The sewer in located in City street R / W or if we cross private property it is in an easement. The 66 inch is an outfall sewer to the river to relocate this sewer could involve the relocation of a CSO. Estimated cost of sewer relocation would be $\$ 1600.00$ per foot with manholes costing $\$ 25,000.00$

Item 2-17: In addition to the three sewers mentioned there is a 24 inch sanitary and a 66 inch combined along the east side of central Ave. in an easement. The 48 inch is in the street R / W and the 60 inches are in an easement. Relocation Cost for 24 inch is $\$ 650.00$ per foot, 60 inch is $\$ 1500.00,66$ inch $\$ 1600.00$ with manholes costing $\$ 20,000$ to $\$ 25,000$ each.

Item 2-22; To relocate this sewer would cost $\$ 1100.00$ per foot. It might be easier to relocate manholes out of the widening.

Item 2-25: To relocate this line you would be looking at $\$ 2400.00$ per foot with manholes costing $\$ 20,000.00$. Sewer is in easement.

Item 2-29: With this line we may get by with adjusting manholes.
Item 2-30: The 60 inch sewer is in street R / W, Relocation cost would be $\$ 1600.00$ per foot with manholes costing $\$ 18,000.00$. As for the 72 inch it appears this line was abandoned when 75 was built.

Item 3-1: The 30 inch sewer is in street R / W and to relocate the sewer would require the sewer to be jacked and bored under the expressway at a cost of $\$ 1100.00$ per foot with manholes $\$ 12,000$ to $\$ 15,000.00$

Item 3-8: The 30 inch sewer is in street R / W cost to relocate similar to Item 3-1.

James G. Brasier E.E., B.S. Directo:
Ted Stricthand
Governo:

Frans Re Jindal, P.E.
District 8 Deputy Director
March 2, 2009
Mr. Mark Conner
Cincinnati Bell Telephone
201 East $4^{\text {th }}$ Street, Bldg 343
Cincinnati, Ohio 45202
Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119
Dear Mr. Conner:
ODOT is requesting that Cincinnati Bell Telephone look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Cincinnati Bell Telephone and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets $5,6 \& 7$ of 7 , you will find the potential impacts to Cincinnati Bell Telephone Facilities.

I am also sending the above enclosed material to Dick Selm.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rick Anton
District 8 Utility Coordinator

Director

Fams E. 百indal, P. \mathbb{E}.
District : Deputy Director

March 2, 2009

Mr. Dick Selm
Cincinnati Bell Telephone
201 East 4 ${ }^{\text {th }}$ Street, Bldg 343
Cincinnati, Ohio 45202

Subject: Potential Utility Impacts

Reference: HAM-71/75-0.00/0.22 PID 75119

Dear Mr. Selm:

ODOT is requesting that Cincinnati Bell Telephone look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Cincinnati Bell Telephone and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6 \& 7 of 7, you will find the potential impacts to Cincinnati Bell Telephone Facilities.

I am also sending the above enclosed material to Mark Conner.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rick Antom

Rick Anton
District 8 Utility Coordinator

Wames G. Downioy, I.E., F.S.
Diresto:

Ted Strickhand
Governor

Hiams R. Jindal, P.E. District 8 Deputy Director

March 2, 2009
Mr. Jeff Ballinger
AT\&T Fiber
4435 Aicholtz Road, Suite 300
Cincinnati, Ohio 45245
Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119
Dear Mr. Ballinger:
ODOT is requesting that AT\&T Fiber look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with AT\&T Fiber and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6 \& 7 of 7, you will find the potential impacts to AT\&T Fibers Facilities.

Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,
Rick Anton

Rick Anton
District 8 Utility Coordinator
tames G. Beashes D.E. IV.S.
Director

Ted Strichiand
Governo

Fans R. Findal, P.E.
Districi 8 Deputy Director

March 2, 2009
Mr. Al Guest
$\mathrm{MCl} /$ Verizon
120 Ravine Street
Akron, Ohio 44303

Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119

Dear Mr. Guest:

ODOT is requesting that $\mathrm{MCI} /$ Verizon look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with MCI/Verizon and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6 \& 7 of 7 , you will find the potential impacts to MCI/Verizon Facilities.

Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rick Anton
District 8 Utility Coordinator

James G. Beasiey, H.E., P.S.
Director

Ted Strickhand
bovenor

Hans R. Jindal, P.E.
Distric: ": Depury Director

March 2, 2009

Mr. Tim Taylor
Level 3 Communications
400 Pike Street, Suite 300
Cincinnati, Ohio 45202

Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119

Dear Mr. Taylor:

ODOT is requesting that Level 3 Communications look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Level 3 Communications and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets $5,6 \& 7$ of 7 , you will find the potential impacts to Level 3 Communications Facilities.

I am also sending the above enclosed material to Keith Osborn.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rich Antm

Rick Anton
District 8 Utility Coordinator

James G. Beasiey, P.E., P.S. Ted Strickianc
Directo:

Hams R. Fincial. P.E. Dismic: : Deputy Director

March 2, 2009

Mr. Keith Osborn
Level 3 Communications, LLC
1025 Eldorado Blvd, Suite 33A-524
Broomfield, CO 80021
Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119

Dear Mr. Osborn:
ODOT is requesting that Level 3 Communications look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Level 3 Communications and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets $5,6 \& 7$ of 7 , you will find the potential impacts to Level 3 Communications Facilities.

I am also sending the above enclosed material to Tim Taylor.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rich Antom

Rick Anton
District 8 Utility Coordinator

Wames G. Heaniey, P.E.E. F.S. Sireato:

Ted Strickiand
Govemor

Heans R. Dincial. P.E.
District \& Depury Director

March 2, 2009
Mr. Rob Franklin
Metropolitan Sewer District
1600 Gest Street
Cincinnati, Ohio 45204
Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119
Dear Mr. Franklin:

ODOT is requesting that Metropolitan Sewer District look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Metropolitan Sewer District and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6 \& 7 of 7, you will find the potential impacts to Metropolitan Sewer District Facilities.

I am also sending the above enclosed material to Tom Schwiers.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,
Pich Fontron
Rick Anton
District 8 Utility Coordinator
whmes G. Dedsiev, B.E., P.S.
raremio

Ted Strickland
Governor

Hans R. Fincial, P.E.
District 8 Deputy Directos

March 2, 2009

Mr. Tom Schwiers
Metropolitan Sewer District 1600 Gest Street
Cincinnati, Ohio 45204

Subject: Potential Utility Impacts

Reference: HAM-71/75-0.00/0.22 PID 75119

Dear Mr. Schwiers:

ODOT is requesting that Metropolitan Sewer District look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Metropolitan Sewer District and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6\& 7 of 7, you will find the potential impacts to Metropolitan Sewer District Facilities.

I am also sending the above enclosed material to Rob Franklin.

Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rick Anton
District 8 Utility Coordinator

ohio Departmento

 F Transportation
, bames (n Deashey. F.E. F.S.

Ted Stricidand
Govemor

Hans F. Jincial, P.E.
District S Deputy Directo:

March 2, 2009

Mr. Jason DeLaet
Cincinnati Water Works
4747 Spring Grove Ave
Cincinnati, Ohio 45232
Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119
Dear Mr. DeLaet:

ODOT is requesting that Cincinnati Water Works look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Cincinnati Water Works and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6\&7 of 7, you will find the potential impacts to Cincinnati Water Works Facilities.

I am also sending the above enclosed material to Russell Weber.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,
Pick Anton

Rick Anton
District 8 Utility Coordinator

bames G. Eumsiey, P.E. H.S.
Fhtoloy

Ted Strickiand Governor

Hams Re Jinctai, P.E.
District 8 Denury Director

March 2, 2009
Mr. Russell Weber
Cincinnati Water Works
4747 Spring Grove Ave
Cincinnati, Ohio 45232
Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119

Dear Mr. Weber:
ODOT is requesting that Cincinnati Water Works look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Cincinnati Water Works and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6 \& 7 of 7, you will find the potential impacts to Cincinnati Water Works Facilities.

I am also sending the above enclosed material to Jason DeLaet.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Reik Antm

Rick Anton
District 8 Utility Coordinator

March 2, 2009

Mr. Gary Hebbler
Duke Gas
139 East $4^{\text {th }}$ Street, Room 460A
Cincinnati, Ohio 45202

Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119
Dear Mr. Hebbeler:

ODOT is requesting that Duke Gas look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Duke Gas and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6\&7 of 7, you will find the potential impacts to Duke Gas Facilities.

I am also sending the above enclosed material to Laura Mate'.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rick Anton
District 8 Utility Coordinator
fatmes ru. Eeashey, P.E., E.S.

Ted Stricktand
Governor

Hans R. Findal. P.E.
District \& Deputy Director

March 2, 2009

Ms. Laura Mate'
Duke Gas
139 East $4^{\text {th }}$ Street, Room 460A
Cincinnati, Ohio 45202

Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119

Dear Ms. Mate':

ODOT is requesting that Duke Gas look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Duke Gas and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6 \& 7 of 7 , you will find the potential impacts to Duke Gas Facilities.

I am also sending the above enclosed material to Gary Hebbler.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rick Anton
District 8 Utility Coordinator

bames G. Eeasicy, P.E. I.S. nrecto:

Ted Strickiand Governor

Hams R. Jindial, P.E. District 8 Deputy Director

March 2, 2009

Mr. Jim Farley
Duke Electric
139 East $4^{\text {th }}$ Street, $5^{\text {th }}$ Floor Main
Cincinnati, Ohio 45202

Subject: Potential Utility Impacts

Reference: HAM-71/75-0.00/0.22 PID 75119

Dear Mr. Farley:

ODOT is requesting that Duke Electric look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Duke Electric and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6 \& 7 of 7, you will find the potential impacts to Duke Electric's Facilities.

I am also sending the above enclosed material to Tom Birkenhauer and Aaron Wright.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rick Anton
District 8 Utility Coordinator

James G. Beasiey, Pr.E., P.S. Thecio:

Ted Strichiand
Governor

Hans R. Jindal, P.E. Disurict \& Deputy Directo:

March 2, 2009
Mr. Aaron Wright
Duke Electric
139 East $4^{\text {th }}$ Street, Room 467A
Cincinnati, Ohio 45202
Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119
Dear Mr. Wright:
ODOT is requesting that Duke Electric look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Duke Electric and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6 \& 7 of 7, you will find the potential impacts to Duke Electric's Facilities.

I am also sending the above enclosed material to Tom Birkenhauer and Jim Farley.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rick Anton
District 8 Utility Coordinator

Wames b. Beasley, P.E. P.S.
Mirector

Ted Strickiand

Governor

Hans R. Jindal. P.E.
Districi 8 Deputy Directo:

March 2, 2009

Mr. Tom Birkenhauer
Duke Electric
139 East $4^{\text {th }}$ Street, Room 467A
Cincinnati, Ohio 45202

Subject: Potential Utility Impacts
Reference: HAM-71/75-0.00/0.22 PID 75119
Dear Mr. Birkenhauer:

ODOT is requesting that Duke Electric look over the enclosed material to give us an estimate of the cost to relocate your facilities using today's dollars. Also, please indicate if your facilities are there by permit or on your own easement.

Enclosed is a map showing the potential impacts with Duke Electric and our project. Using Table 30 (Utility Impacts in Ohio) and map sheets 5, 6\&7 of 7, you will find the potential impacts to Duke Electric's Facilities.

I am also sending the above enclosed material to Aaron Wright and Jim Farley.
Any questions please call 513-933-6624 or email me at rick.anton@dot.state.oh.us.
Respectfully,

Rick Anton
District 8 Utility Coordinator

Appendix F Highway Capacity Analysis

Preanodys

PRemen

Papan inf

LOCATION TYPE	LOS GUIDE
(D) intersection \triangle Merge/Diverge \square Freeway Segment (1) Weove Segment	$108 \mathrm{~A}-\mathrm{D}$ 108 E 108 F
CROSS REFERENCE	TEXT Style
```Intersection = I-# Ramp Junction = R-# Freeway Segment = F-# Weove Segment = W-#```	AM/PM Traffic Volumes      Weave Segment Length   * $=$ Constroined Troffic

(C)



LOCATION TYPE	LOS GUIDE
(D) intersection   $\triangle$ Merge/Diverge   $\square$ Freeway Segment   $\square$ Weove Segment	$108 \mathrm{~A}-\mathrm{D}$   108 E   108 F
CROSS REFERENCE	TEXT STYLE
$\begin{aligned} & \text { Intersection = I-\# } \\ & \text { Romp Junction = R-\# } \\ & \text { Freeway Segment = F-\# } \\ & \text { Weave Segment = W-\# } \end{aligned}$	AM/PM Troffic Volumes   © $\times$ \# of lanes   Weave Segment Length   * $=$ Constroined Troffic



${ }^{\text {Pepapader }}$ PR




PRempansons








PRempansinckermof


Propard dir












Als








Fickereme




Fickereme


隹

## Appendix G Signal Warrants

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Dixie Highway and I-71/75 NB Ramps
City/State:
Covington, KY
Date:
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	180		440	1820	2440	180	2260
8:00-9:00 AM	155		505	902	1562	155	1407
9:00-10:00AM	155		505	902	1562	155	1407
10:00-11:00 AM	155		505	902	1562	155	1407
11:00-12:00 PM	155		505	902	1562	155	1407
12:00-1:00 PM	155		505	902	1562	155	1407
1:00-2:00 PM	155		505	902	1562	155	1407
2:00-3:00 PM	155		505	902	1562	155	1407
3:00-4:00 PM	155		505	902	1562	155	1407
4:00-5:00 PM	270		1100	750	2120	270	1850
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	1690	0	5580	9786	17056	1690	15366

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$


# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Dixie Highway and I-71/75 NB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
W. 5th Street and Crescent Avenue

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{gathered} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	250		50	150	450	250	200
8:00-9:00 AM	244		46	107	397	244	153
9:00-10:00AM	244		46	107	397	244	153
10:00-11:00 AM	244		46	107	397	244	153
11:00-12:00 PM	244		46	107	397	244	153
12:00-1:00 PM	244		46	107	397	244	153
1:00-2:00 PM	244		46	107	397	244	153
2:00-3:00 PM	244		46	107	397	244	153
3:00-4:00 PM	244		46	107	397	244	153
4:00-5:00 PM	400		70	150	620	400	220
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	2602	0	488	1156	4246	2602	1644

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection
want to use it?
CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 5th Street and Crescent Avenue
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW
Warrant 1 - Eight-Hour Vehicular Volume
Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1	Minor Street:	1
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	153
1:00-2:00 AM	0	1:00-2:00 PM	153
2:00-3:00 AM	0	2:00-3:00 PM	153
3:00-4:00 AM	0	3:00-4:00 PM	153
4:00-5:00 AM	0	4:00-5:00 PM	220
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	200	7:00-8:00 PM	0
8:00-9:00 AM	153	8:00-9:00 PM	0
9:00-10:00AM	153	9:00-10:00PM	0
10:00-11:00 AM	153	10:00-11:00 PM	0
11:00-12:00 PM	153	11:00-12:00 PM	

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	244
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	244
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	244
3:00-4:00 AM	0	$3: 00-4: 00$ PM	244
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	400
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	250	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	244	$8: 00-9: 00$ PM	0
9:00-10:00AM	244	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	244	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	244	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 5th Street and Crescent Avenue
City/State: Covington, KY
Warrant 3B - Peak Hour

The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Pike Street and Bullock Street

Date:
Covington, KY
7/8/2010 Performed By: AMW

	$\begin{gathered} \begin{array}{c} \text { Minor (EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$		$\begin{array}{c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		410	1240	280	1930	410	1520
8:00-9:00 AM		379	257	311	947	379	568
9:00-10:00AM		379	257	311	947	379	568
10:00-11:00 AM		379	257	311	947	379	568
11:00-12:00 PM		379	257	311	947	379	568
12:00-1:00 PM		379	257	311	947	379	568
1:00-2:00 PM		379	257	311	947	379	568
2:00-3:00 PM		379	257	311	947	379	568
3:00-4:00 PM		379	257	311	947	379	568
4:00-5:00 PM		780	290	680	1750	780	970
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	4222	3586	3448	11256	4222	7034

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Pike Street and Bullock Street
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	2
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	568
1:00-2:00 AM	0	1:00-2:00 PM	568
2:00-3:00 AM	0	2:00-3:00 PM	568
3:00-4:00 AM	0	3:00-4:00 PM	568
4:00-5:00 AM	0	4:00-5:00 PM	970
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	1520	7:00-8:00 PM	0
8:00-9:00 AM	568	8:00-9:00 PM	0
9:00-10:00AM	568	9:00-10:00PM	0
10:00-11:00 AM	568	10:00-11:00 PM	0
11:00-12.00 PM	568	11.00-12:00 P	


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	379
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	379
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	379
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	379
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	780
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	410	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	379	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	379	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	379	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	379	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Pike Street and Bullock Street
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
Pike Street and Jillians Way

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	590		1260	280	2130	590	1540
8:00-9:00 AM	307		298	295	900	307	593
9:00-10:00AM	307		298	295	900	307	593
10:00-11:00 AM	307		298	295	900	307	593
11:00-12:00 PM	307		298	295	900	307	593
12:00-1:00 PM	307		298	295	900	307	593
1:00-2:00 PM	307		298	295	900	307	593
2:00-3:00 PM	307		298	295	900	307	593
3:00-4:00 PM	307		298	295	900	307	593
4:00-5:00 PM	410		400	640	1450	410	1040
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	3456	0	4044	3280	10780	3456	7324

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: Pike Street and Jillians Way
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	1
	1		
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	593
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	593
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	593
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	593
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1040
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1540	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	593	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	593	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	593	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	593	$11: 00-12: 00 \mathrm{PM}$	0


Vehicles per hour on higher-volume minor street approach (one direction only):				
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	307	
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	307	
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	307	
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	307	
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	410	
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0	
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0	
7:00-8:00 AM	590	$7: 00-8: 00 \mathrm{PM}$	0	
8:00-9:00 AM	307	$8: 00-9: 00 \mathrm{PM}$	0	
9:00-10:00AM	307	$9: 00-10: 00 \mathrm{PM}$	0	
10:00-11:00 AM	307	$10: 00-11: 00 \mathrm{PM}$	0	
11:00-12:00 PM	307	$11: 00-12: 00 \mathrm{PM}$	0	

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Pike Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
W. 12th Street and Bullock Street

Date:
Covington, KY
7/8/2010 Performed By: AMW

	$\begin{gathered} \begin{array}{c} \text { Minor (EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	Minor (WB/SB)   Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		380	220	230	830	380	450
8:00-9:00 AM		327	107	188	622	327	295
9:00-10:00AM		327	107	188	622	327	295
10:00-11:00 AM		327	107	188	622	327	295
11:00-12:00 PM		327	107	188	622	327	295
12:00-1:00 PM		327	107	188	622	327	295
1:00-2:00 PM		327	107	188	622	327	295
2:00-3:00 PM		327	107	188	622	327	295
3:00-4:00 PM		327	107	188	622	327	295
4:00-5:00 PM		550	90	290	930	550	380
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	3546	1166	2024	6736	3546	3190

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 12th Street and Bullock Street
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1	Minor Street:	2
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	295
1:00-2:00 AM	0	1:00-2:00 PM	295
2:00-3:00 AM	0	2:00-3:00 PM	295
3:00-4:00 AM	0	3:00-4:00 PM	295
4:00-5:00 AM	0	4:00-5:00 PM	380
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	450	7:00-8:00 PM	0
8:00-9:00 AM	295	8:00-9:00 PM	0
9:00-10:00AM	295	9:00-10:00PM	0
10:00-11:00 AM	295	10:00-11:00 PM	0
11:00-12.00 PM	2		

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	327
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	327
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	327
3:00-4:00 AM	0	$3: 00-4: 00$ PM	327
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	550
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	380	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	327	$8: 00-9: 00$ PM	0
9:00-10:00AM	327	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	327	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	327	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 12th Street and Bullock Street
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? No

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
W. 12th Street and Jillians Way

Date:

	Minor (EB/NB) Approach	$\begin{gathered} \begin{array}{c} \text { Minor (WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	250		450	570	1270	250	1020
8:00-9:00 AM	316		282	341	939	316	623
9:00-10:00AM	316		282	341	939	316	623
10:00-11:00 AM	316		282	341	939	316	623
11:00-12:00 PM	316		282	341	939	316	623
12:00-1:00 PM	316		282	341	939	316	623
1:00-2:00 PM	316		282	341	939	316	623
2:00-3:00 PM	316		282	341	939	316	623
3:00-4:00 PM	316		282	341	939	316	623
4:00-5:00 PM	550		330	510	1390	550	840
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	3328	0	3036	3808	10172	3328	6844

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection CANNOT use the $70 \%$ option for this warrant, do you want to use it? $\qquad$
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 12th Street and Jillians Way
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1		
	Minor Street:		2
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	623
1:00-2:00 AM	0	$1: 00-2: 00$ PM	623
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	623
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	623
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	840
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1020	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	623	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	623	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	623	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	623	$11: 00-12: 00 \mathrm{PM}$	0


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	316
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	316
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	316
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	316
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	550
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	250	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	316	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	316	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	316	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	316	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
No
Combination of Warrants A and B Criteria Met?
Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 12th Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Kyles Lane and I-71/75 SB Ramps

Date:
Covington, KY
7/8/2010 Performed By: AMW

$\left.$|  | Minor (EB/NB) <br> Approach | Minor (WB/SB) <br> Approach | Major(EB/NB) <br> Approach | Major(WBISB) <br> Approach | Total | Minor |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | Total |
| :---: |
| Major | \right\rvert\,

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: Kyles Lane and I-71/75 SB Ramps
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:
Major Street: $\quad 2 \quad$ Minor Street: 2

Vehicles per hour on major street (total of both approaches):

12:00-1:00 AM	0	$12: 00-1: 00$ PM	1210
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	1210
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	1210
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	1210
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	2010
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1610	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	1210	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	1210	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	1210	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	1210	$11: 00-12: 00 \mathrm{PM}$	0


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	453
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	453
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	453
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	453
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	870
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	490	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	453	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	453	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	453	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	453	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
Yes
Combination of Warrants A and B Criteria Met? Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Kyles Lane and I-71/75 SB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
Kyles Lane and I-71/75 NB Ramps

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	420		910	1450	2780	420	2360
8:00-9:00 AM	361		731	841	1933	361	1572
9:00-10:00AM	361		731	841	1933	361	1572
10:00-11:00 AM	361		731	841	1933	361	1572
11:00-12:00 PM	361		731	841	1933	361	1572
12:00-1:00 PM	361		731	841	1933	361	1572
1:00-2:00 PM	361		731	841	1933	361	1572
2:00-3:00 PM	361		731	841	1933	361	1572
3:00-4:00 PM	361		731	841	1933	361	1572
4:00-5:00 PM	680		1220	1170	3070	680	2390
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	3988	0	7978	9348	21314	3988	17326

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff					
Intersection: Kyles Lane and I-71/75 NB Ram   City/State: Covington, KY   Date 7/8/2010   Warrant 1 - Eight-Hour Vehicular Volume			Performed by:	AMW	
Number of lanes of moving traffic for moving traffic on each approach:					
	Major Street:	2	Minor Street:	2	
Vehicles per hour on major street (total of both approaches):					
	12:00-1:00 AM	0	12:00-1:00 PM	1572	
	1:00-2:00 AM	0	1:00-2:00 PM	1572	
	2:00-3:00 AM	0	2:00-3:00 PM	1572	
	3:00-4:00 AM	0	3:00-4:00 PM	1572	
	4:00-5:00 AM	0	4:00-5:00 PM	2390	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	2360	7:00-8:00 PM	0	
	8:00-9:00 AM	1572	8:00-9:00 PM	0	
	9:00-10:00AM	1572	9:00-10:00PM	0	
	10:00-11:00 AM	1572	10:00-11:00 PM	0	
	11:00-12:00 PM	1572	11:00-12:00 PM	0	
Vehicles per hour on higher-volume minor street approach (one did					ction o
	12:00-1:00 AM	0	12:00-1:00 PM	361	
	1:00-2:00 AM	0	1:00-2:00 PM	361	
	2:00-3:00 AM	0	2:00-3:00 PM	361	
	3:00-4:00 AM	0	3:00-4:00 PM	361	
	4:00-5:00 AM	0	4:00-5:00 PM	680	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	420	7:00-8:00 PM	0	
	8:00-9:00 AM	361	8:00-9:00 PM	0	
	9:00-10:00AM	361	9:00-10:00PM	0	
	10:00-11:00 AM	361	10:00-11:00 PM	0	
	11:00-12:00 PM	361	11:00-12:00 PM	0	
	Is the intersection using the reduced volume criteria based on speed or population? No				
	A. Is the Minimum Vehicular Volume Warrant Met?				
	B. Is the Interruption of Continuous Traffic Met?				Yes
	Combination of Warrants $A$ and $B$ Criteria Met?   (Use only when Conditions $A$ and $B$ are both not satisified)				Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Kyles Lane and I-71/75 NB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Dixie Highway and I-71/75 SB Ramps
City/State:
Covington, KY
7/8/2010 Performed By: AMW
Date:

$\left.$|  | Minor (EB/NB) <br> Approach | Minor (WBISB) <br> Approach | Major(EB/NB) <br> Approach | Major(WB/SB) <br> Approach | Total | Minor |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | Total |
| :---: |
| Major | \right\rvert\,

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff					
Intersection: Dixie Highway and I-71/75 SB Ramps City/State: Covington, KY					
Date	7/8/2010		Performed by:	AMW	
Warrant 1 - Eight-Hour Vehicular Volume					
Number of lanes of moving traffic for moving traffic on each approach:					
	Major Street:	2	Minor Street:	2	
Vehicles per hour on major street (total of both approaches):					
	12:00-1:00 AM	0	12:00-1:00 PM	1157	
	1:00-2:00 AM	0	1:00-2:00 PM	1157	
	2:00-3:00 AM	0	2:00-3:00 PM	1157	
	3:00-4:00 AM	0	3:00-4:00 PM	1157	
	4:00-5:00 AM	0	4:00-5:00 PM	1500	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	1710	7:00-8:00 PM	0	
	8:00-9:00 AM	1157	8:00-9:00 PM	0	
	9:00-10:00AM	1157	9:00-10:00PM	0	
	10:00-11:00 AM	1157	10:00-11:00 PM	0	
	11:00-12:00 PM	1157	11:00-12:00 PM	0	
					Vehicles per hour on higher-volume minor street approach (one direction only):
	12:00-1:00 AM	0	12:00-1:00 PM	247	
	1:00-2:00 AM	0	1:00-2:00 PM	247	
	2:00-3:00 AM	0	2:00-3:00 PM	247	
	3:00-4:00 AM	0	3:00-4:00 PM	247	
	4:00-5:00 AM	0	4:00-5:00 PM	620	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	160	7:00-8:00 PM	0	
	8:00-9:00 AM	247	8:00-9:00 PM	0	
	9:00-10:00AM	247	9:00-10:00PM	0	
	10:00-11:00 AM	247	10:00-11:00 PM	0	
	11:00-12:00 PM	247	11:00-12:00 PM	0	
Is the intersection using the reduced volume criteria based on sp or population? No					
A. Is the Minimum Vehicular Volume Warrant Met? Yes					
	B. Is the Interruption of Continuous Traffic Met?				Yes
	Combination of Warrants A and B Criteria Met?   (Use only when Conditions A and B are both not satisified)				Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Dixie Highway and I-71/75 SB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour

The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
W. 4th Street and Crescent Avenue

Date:
Covington, KY
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	$\begin{gathered} \text { Minor (WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \begin{array}{c} \text { Major(EB/NB } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		1210		490	1700	1210	490
8:00-9:00 AM		1212		290	1502	1212	290
9:00-10:00AM		1212		290	1502	1212	290
10:00-11:00 AM		1212		290	1502	1212	290
11:00-12:00 PM		1212		290	1502	1212	290
12:00-1:00 PM		1212		290	1502	1212	290
1:00-2:00 PM		1212		290	1502	1212	290
2:00-3:00 PM		1212		290	1502	1212	290
3:00-4:00 PM		1212		290	1502	1212	290
4:00-5:00 PM		1310		440	1750	1310	440
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	12216	0	3250	15466	12216	3250

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection
want to use it?
CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 4th Street and Crescent Avenue
City/State: Covington, KY
Date 7/19/2010 Performed by: AMW
Warrant 1 - Eight-Hour Vehicular Volume
Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1	Minor Street:	1
	1		
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	290
1:00-2:00 AM	0	$1: 00-2: 00$ PM	290
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	290
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	290
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	440
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	490	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	290	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	290	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	290	10:00-11:00 PM	0
11:00-12:00 PM	290	$11: 00-12: 00 \mathrm{PM}$	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00$ PM	1212
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	1212
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	1212
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	1212
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1310
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1210	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	1212	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	1212	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	1212	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	1212	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 4th Street and Crescent Avenue
City/State: Covington, KY

Warrant 3B - Peak Hour

The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Pike Street and Bullock Street
City/State:
Covington, KY
Date:
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB)   Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		1040	710	470	2220	1040	1180
8:00-9:00 AM		1042	66	422	1530	1042	488
9:00-10:00AM		1042	66	422	1530	1042	488
10:00-11:00 AM		1042	66	422	1530	1042	488
11:00-12:00 PM		1042	66	422	1530	1042	488
12:00-1:00 PM		1042	66	422	1530	1042	488
1:00-2:00 PM		1042	66	422	1530	1042	488
2:00-3:00 PM		1042	66	422	1530	1042	488
3:00-4:00 PM		1042	66	422	1530	1042	488
4:00-5:00 PM		2040	80	770	2890	2040	850
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	11416	1318	4616	17350	11416	5934

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$

Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Pike Street and Bullock Street
City/State: Covington, KY
Date 7/19/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	3
	2		
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	488
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	488
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	488
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	488
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	850
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1180	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	488	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	488	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	488	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	488	$11: 00-12: 00 \mathrm{PM}$	0


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	1042
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	1042
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	1042
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	1042
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	2040
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1040	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	1042	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	1042	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	1042	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	1042	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Pike Street and Bullock Street
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
Pike Street and Jillians Way
City/State:
Covington, KY
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WBISB) Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	Major(WBISB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	720		800	310	1830	720	1110
8:00-9:00 AM	377		144	349	870	377	493
9:00-10:00AM	377		144	349	870	377	493
10:00-11:00 AM	377		144	349	870	377	493
11:00-12:00 PM	377		144	349	870	377	493
12:00-1:00 PM	377		144	349	870	377	493
1:00-2:00 PM	377		144	349	870	377	493
2:00-3:00 PM	377		144	349	870	377	493
3:00-4:00 PM	377		144	349	870	377	493
4:00-5:00 PM	500		290	760	1550	500	1050
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	4236	0	2242	3862	10340	4236	6104

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: Pike Street and Jillians Way
City/State: Covington, KY
Date 7/19/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	2
	2		
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	493
1:00-2:00 AM	0	$1: 00-2: 00$ PM	493
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	493
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	493
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1050
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1110	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	493	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	493	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	493	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	493	$11: 00-12: 00 \mathrm{PM}$	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	377
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	377
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	377
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	377
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	500
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	720	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	377	$8: 00-9: 00$ PM	0
9:00-10:00AM	377	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	377	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	377	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Pike Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
W. 12th Street and Bullock Street

Date:
Covington, KY
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WBISB) Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		990	250	260	1500	990	510
8:00-9:00 AM		966	121	218	1305	966	339
9:00-10:00AM		966	121	218	1305	966	339
10:00-11:00 AM		966	121	218	1305	966	339
11:00-12:00 PM		966	121	218	1305	966	339
12:00-1:00 PM		966	121	218	1305	966	339
1:00-2:00 PM		966	121	218	1305	966	339
2:00-3:00 PM		966	121	218	1305	966	339
3:00-4:00 PM		966	121	218	1305	966	339
4:00-5:00 PM		1670	100	330	2100	1670	430
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	10388	1318	2334	14040	10388	3652

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection
want to use it?
CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 12th Street and Bullock Street
City/State: Covington, KY
Date 7/19/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1	Minor Street:	2
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	339
1:00-2:00 AM	0	1:00-2:00 PM	339
2:00-3:00 AM	0	2:00-3:00 PM	339
3:00-4:00 AM	0	3:00-4:00 PM	339
4:00-5:00 AM	0	4:00-5:00 PM	430
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	510	7:00-8:00 PM	0
8:00-9:00 AM	339	8:00-9:00 PM	0
9:00-10:00AM	339	9:00-10:00PM	0
10:00-11:00 AM	339	10:00-11:00 PM	0
11:00-12.00 PM	339		

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	12:00-1:00 PM	966
1:00-2:00 AM	0	1:00-2:00 PM	966
2:00-3:00 AM	0	2:00-3:00 PM	966
3:00-4:00 AM	0	3:00-4:00 PM	966
4:00-5:00 AM	0	4:00-5:00 PM	1670
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	990	7:00-8:00 PM	0
8:00-9:00 AM	966	8:00-9:00 PM	0
9:00-10:00AM	966	9:00-10:00PM	0
10:00-11:00 AM	966	10:00-11:00 PM	0
11:00-12:00 PM	966	11:00-12:00 PM	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 12th Street and Bullock Street
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? No

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
W. 12th Street and Jillians Way

Date:

$\left.$|  | Minor (EB/NB) <br> Approach | Minor (WB/SB) <br> Approach | Major(EB/NB) <br> Approach | Major(WBISB) <br> Approach | Total | Minor |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | Total |
| :---: |
| Major | \right\rvert\,

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 12th Street and Jillians Way
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	2
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	819
1:00-2:00 AM	0	1:00-2:00 PM	819
2:00-3:00 AM	0	2:00-3:00 PM	819
3:00-4:00 AM	0	3:00-4:00 PM	819
4:00-5:00 AM	0	4:00-5:00 PM	1120
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	1280	7:00-8:00 PM	0
8:00-9:00 AM	819	8:00-9:00 PM	0
9:00-10:00AM	819	9:00-10:00PM	0
10:00-11:00 AM	819	10:00-11:00 PM	0
11:00-12:00 P	81	11:00-12.00	

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00$ PM	316
1:00-2:00 AM	0	$1: 00-2: 00$ PM	316
2:00-3:00 AM	0	$2: 00-3: 00$ PM	316
3:00-4:00 AM	0	$3: 00-4: 00$ PM	316
4:00-5:00 AM	0	$4: 00-5: 00$ PM	550
5:00-6:00 AM	0	$5: 00-6: 00$ PM	0
6:00-7:00 AM	0	$6: 00-7: 00$ PM	0
7:00-8:00 AM	250	$7: 00-8: 00$ PM	0
8:00-9:00 AM	316	$8: 00-9: 00$ PM	0
9:00-10:00AM	316	$9: 00-10: 00 P M$	0
10:00-11:00 AM	316	$10: 00-11: 00$ PM	0
11:00-12:00 PM	316	$11: 00-12: 00$ PM	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
No
Combination of Warrants A and B Criteria Met?
Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 12th Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Kyles Lane and I-71/75 SB Ramps

Date:
Covington, KY
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	$\begin{gathered} \text { Minor (WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	$\begin{array}{\|c} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{array}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		690	810	850	2350	690	1660
8:00-9:00 AM		591	595	690	1876	591	1285
9:00-10:00AM		591	595	690	1876	591	1285
10:00-11:00 AM		591	595	690	1876	591	1285
11:00-12:00 PM		591	595	690	1876	591	1285
12:00-1:00 PM		591	595	690	1876	591	1285
1:00-2:00 PM		591	595	690	1876	591	1285
2:00-3:00 PM		591	595	690	1876	591	1285
3:00-4:00 PM		591	595	690	1876	591	1285
4:00-5:00 PM		1140	970	1150	3260	1140	2120
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	6558	6540	7520	20618	6558	14060

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: Kyles Lane and I-71/75 SB Ramps		
City/State: Covington, KY    Date $7 / 19 / 2010$ Performed by: AMW AM		

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	2
	2		
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	1285
1:00-2:00 AM	0	$1: 00-2: 00$ PM	1285
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	1285
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	1285
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	2120
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1660	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	1285	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	1285	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	1285	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	1285	$11: 00-12: 00 \mathrm{PM}$	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	591
1:00-2:00 AM	0	$1: 00-2: 00$ PM	591
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	591
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	591
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1140
5:00-6:00 AM	0	$5: 00-6: 00$ PM	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	690	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	591	$8: 00-9: 00$ PM	0
9:00-10:00AM	591	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	591	$10: 00-11: 00$ PM	0
11:00-12:00 PM	591	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
Yes
Combination of Warrants A and B Criteria Met? Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Kyles Lane and I-71/75 SB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Kyles Lane and I-71/75 NB Ramps

Date:
Covington, KY
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	440		1120	1660	3220	440	2780
8:00-9:00 AM	394		863	959	2216	394	1822
9:00-10:00AM	394		863	959	2216	394	1822
10:00-11:00 AM	394		863	959	2216	394	1822
11:00-12:00 PM	394		863	959	2216	394	1822
12:00-1:00 PM	394		863	959	2216	394	1822
1:00-2:00 PM	394		863	959	2216	394	1822
2:00-3:00 PM	394		863	959	2216	394	1822
3:00-4:00 PM	394		863	959	2216	394	1822
4:00-5:00 PM	720		1460	1320	3500	720	2780
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	4312	0	9484	10652	24448	4312	20136

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff					
Intersection: Kyles Lane and I-71/75 NB Ram   City/State: Covington, KY   Date 7/19/2010   Warrant 1 - Eight-Hour Vehicular Volume					
			Performed by:	AMW	
Number of lanes of moving traffic for moving traffic on each approach:					
	Major Street:	2	Minor Street:	2	
Vehicles per hour on major street (total of both approaches):					
	12:00-1:00 AM	0	12:00-1:00 PM	1822	
	1:00-2:00 AM	0	1:00-2:00 PM	1822	
	2:00-3:00 AM	0	2:00-3:00 PM	1822	
	3:00-4:00 AM	0	3:00-4:00 PM	1822	
	4:00-5:00 AM	0	4:00-5:00 PM	2780	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	2780	7:00-8:00 PM	0	
	8:00-9:00 AM	1822	8:00-9:00 PM	0	
	9:00-10:00AM	1822	9:00-10:00PM	0	
	10:00-11:00 AM	1822	10:00-11:00 PM	0	
	11:00-12:00 PM	1822	11:00-12:00 PM	0	
Vehicles per hour on higher-volume minor street approach (one direction					
	12:00-1:00 AM	0	12:00-1:00 PM	394	
	1:00-2:00 AM	0	1:00-2:00 PM	394	
	2:00-3:00 AM	0	2:00-3:00 PM	394	
	3:00-4:00 AM	0	3:00-4:00 PM	394	
	4:00-5:00 AM	0	4:00-5:00 PM	720	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	440	7:00-8:00 PM	0	
	8:00-9:00 AM	394	8:00-9:00 PM	0	
	9:00-10:00AM	394	9:00-10:00PM	0	
	10:00-11:00 AM	394	10:00-11:00 PM	0	
	11:00-12:00 PM	394	11:00-12:00 PM	0	
	Is the intersection using the reduced volume criteria based on speed or population? No				
	A. Is the Minimum Vehicular Volume Warrant Met?				
	B. Is the Interruption of Continuous Traffic Met?				
	Combination of Warrants A and B Criteria Met?   (Use only when Conditions A and B are both not satisified)				Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Kyles Lane and I-71/75 NB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Dixie Highway and I-71/75 SB Ramps
City/State:
Covington, KY
Date:
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		190	660	1510	2360	190	2170
8:00-9:00 AM		272	601	863	1736	272	1464
9:00-10:00AM		272	601	863	1736	272	1464
10:00-11:00 AM		272	601	863	1736	272	1464
11:00-12:00 PM		272	601	863	1736	272	1464
12:00-1:00 PM		272	601	863	1736	272	1464
1:00-2:00 PM		272	601	863	1736	272	1464
2:00-3:00 PM		272	601	863	1736	272	1464
3:00-4:00 PM		272	601	863	1736	272	1464
4:00-5:00 PM		680	1170	740	2590	680	1910
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	3046	6638	9154	18838	3046	15792

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: Dixie Highway and I-71/75 SB Ramps
City/State: Covington, KY
Date 7/19/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	2
	2		
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	1464
1:00-2:00 AM	0	$1: 00-2: 00$ PM	1464
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	1464
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	1464
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1910
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	2170	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	1464	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	1464	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	1464	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	1464	$11: 00-12: 00 \mathrm{PM}$	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	272
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	272
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	272
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	272
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	680
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	190	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	272	$8: 00-9: 00$ PM	0
9:00-10:00AM	272	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	272	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	272	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met? Yes
B. Is the Interruption of Continuous Traffic Met? Yes
Combination of Warrants A and B Criteria Met? Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Dixie Highway and I-71/75 SB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Dixie Highway and I-71/75 NB Ramps
City/State:
Covington, KY
Date:
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	$\begin{gathered} \begin{array}{c} \text { Minor (WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Major(WB/SB) } \\ \text { Approach } \end{array} \\ \hline \hline \end{array}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	280		540	2110	2930	280	2650
8:00-9:00 AM	248		550	977	1775	248	1527
9:00-10:00AM	248		550	977	1775	248	1527
10:00-11:00 AM	248		550	977	1775	248	1527
11:00-12:00 PM	248		550	977	1775	248	1527
12:00-1:00 PM	248		550	977	1775	248	1527
1:00-2:00 PM	248		550	977	1775	248	1527
2:00-3:00 PM	248		550	977	1775	248	1527
3:00-4:00 PM	248		550	977	1775	248	1527
4:00-5:00 PM	380		1210	810	2400	380	2020
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	2644	0	6150	10736	19530	2644	16886

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$


# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Dixie Highway and I-71/75 NB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
W. 9th Street and Jillians Way

Date:
Covington, KY
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	470		710	280	1460	470	990
8:00-9:00 AM	198		744	257	1199	198	1001
9:00-10:00AM	198		744	257	1199	198	1001
10:00-11:00 AM	198		744	257	1199	198	1001
11:00-12:00 PM	198		744	257	1199	198	1001
12:00-1:00 PM	198		744	257	1199	198	1001
1:00-2:00 PM	198		744	257	1199	198	1001
2:00-3:00 PM	198		744	257	1199	198	1001
3:00-4:00 PM	198		744	257	1199	198	1001
4:00-5:00 PM	400		920	450	1770	400	1370
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	2454	0	7582	2786	12822	2454	10368

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection CANNOT use the $70 \%$ option for this warrant, do you want to use it?

No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 9th Street and Jillians Way
City/State: Covington, KY
Date 7/19/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1	Minor Street:	2
	2		
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	1001
1:00-2:00 AM	0	$1: 00-2: 00$ PM	1001
2:00-3:00 AM	0	$2: 00-3: 00$ PM	1001
3:00-4:00 AM	0	$3: 00-4: 00$ PM	1001
4:00-5:00 AM	0	$4: 00-5: 00$ PM	1370
5:00-6:00 AM	0	$5: 00-6: 00$ PM	0
6:00-7:00 AM	0	$6: 00-7: 00$ PM	0
7:00-8:00 AM	990	$7: 00-8: 00$ PM	0
8:00-9:00 AM	1001	$8: 00-9: 00$ PM	0
9:00-10:00AM	1001	$9: 00-10: 00 P M$	0
10:00-11:00 AM	1001	10:00-11:00 PM	0
11:00-12:00 PM	1001	$11: 00-12: 00$ PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	198
1:00-2:00 AM	0	$1: 00-2: 00$ PM	198
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	198
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	198
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	400
5:00-6:00 AM	0	$5: 00-6: 00$ PM	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	470	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	198	$8: 00-9: 00$ PM	0
9:00-10:00AM	198	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	198	$10: 00-11: 00$ PM	0
11:00-12:00 PM	198	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? Yes
Combination of Warrants A and B Criteria Met? Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 9th Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
W. 9th Street and Bullock Street

Date:
Covington, KY
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB)   Approach	$\begin{gathered} \hline \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		1450	220	260	1930	1450	480
8:00-9:00 AM		1433	205	247	1885	1433	452
9:00-10:00AM		1433	205	247	1885	1433	452
10:00-11:00 AM		1433	205	247	1885	1433	452
11:00-12:00 PM		1433	205	247	1885	1433	452
12:00-1:00 PM		1433	205	247	1885	1433	452
1:00-2:00 PM		1433	205	247	1885	1433	452
2:00-3:00 PM		1433	205	247	1885	1433	452
3:00-4:00 PM		1433	205	247	1885	1433	452
4:00-5:00 PM		1920	310	450	2680	1920	760
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	14834	2170	2686	19690	14834	4856

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 9th Street and Bullock Street
City/State: Covington, KY
Date 7/19/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1		
	Minor Street:		3
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	452
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	452
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	452
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	452
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	760
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	480	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	452	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	452	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	452	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	452	$11: 00-12: 00 \mathrm{PM}$	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00$ PM	1433
1:00-2:00 AM	0	$1: 00-2: 00$ PM	1433
2:00-3:00 AM	0	$2: 00-3: 00$ PM	1433
3:00-4:00 AM	0	$3: 00-4: 00$ PM	1433
4:00-5:00 AM	0	$4: 00-5: 00$ PM	1920
5:00-6:00 AM	0	$5: 00-6: 00$ PM	0
6:00-7:00 AM	0	$6: 00-7: 00$ PM	0
7:00-8:00 AM	1450	$7: 00-8: 00$ PM	0
8:00-9:00 AM	1433	$8: 00-9: 00$ PM	0
9:00-10:00AM	1433	$9: 00-10: 00 P M$	0
10:00-11:00 AM	1433	$10: 00-11: 00$ PM	0
11:00-12:00 PM	1433	$11: 00-12: 00$ PM	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 9th Street and Bullock Street
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
W. 5th Street and Jillians Way

City/State:
Covington, KY
Date:
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	1430		240		1670	1430	240
8:00-9:00 AM	1179		142		1321	1179	142
9:00-10:00AM	1179		142		1321	1179	142
10:00-11:00 AM	1179		142		1321	1179	142
11:00-12:00 PM	1179		142		1321	1179	142
12:00-1:00 PM	1179		142		1321	1179	142
1:00-2:00 PM	1179		142		1321	1179	142
2:00-3:00 PM	1179		142		1321	1179	142
3:00-4:00 PM	1179		142		1321	1179	142
4:00-5:00 PM	1460		50		1510	1460	50
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	12322	0	1426	0	13748	12322	1426

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 5th Street and Jillians Way
City/State: Covington, KY
Date 7/19/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	1
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	142
1:00-2:00 AM	0	1:00-2:00 PM	142
2:00-3:00 AM	0	2:00-3:00 PM	142
3:00-4:00 AM	0	3:00-4:00 PM	142
4:00-5:00 AM	0	4:00-5:00 PM	50
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	240	7:00-8:00 PM	0
8:00-9:00 AM	142	8:00-9:00 PM	0
9:00-10:00AM	142	9:00-10:00PM	0
10:00-11:00 AM	142	10:00-11:00 PM	0
11:00-12:00 PM	142	11:00-12:00 PM	


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	1179
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	1179
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	1179
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	1179
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1460
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1430	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	1179	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	1179	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	1179	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	1179	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 5th Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
W. 4th Street and Jillians Way

Date:
Covington, KY
7/19/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WBISB) Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	330		880		1210	330	880
8:00-9:00 AM	365		552		917	365	552
9:00-10:00AM	365		552		917	365	552
10:00-11:00 AM	365		552		917	365	552
11:00-12:00 PM	365		552		917	365	552
12:00-1:00 PM	365		552		917	365	552
1:00-2:00 PM	365		552		917	365	552
2:00-3:00 PM	365		552		917	365	552
3:00-4:00 PM	365		552		917	365	552
4:00-5:00 PM	540		770		1310	540	770
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	3790	0	6066	0	9856	3790	6066

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 4th Street and Jillians Way
City/State: Covington, KY
Date 7/19/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	1
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	552
1:00-2:00 AM	0	1:00-2:00 PM	552
2:00-3:00 AM	0	2:00-3:00 PM	552
3:00-4:00 AM	0	3:00-4:00 PM	552
4:00-5:00 AM	0	4:00-5:00 PM	770
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	880	7:00-8:00 PM	0
8:00-9:00 AM	552	8:00-9:00 PM	0
9:00-10:00AM	552	9:00-10:00PM	0
10:00-11:00 AM	552	10:00-11:00 PM	0
11:00-12:00 PM	552	11:00-12:00 PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00$ PM	365
1:00-2:00 AM	0	$1: 00-2: 00$ PM	365
2:00-3:00 AM	0	$2: 00-3: 00$ PM	365
3:00-4:00 AM	0	$3: 00-4: 00$ PM	365
4:00-5:00 AM	0	$4: 00-5: 00$ PM	540
5:00-6:00 AM	0	$5: 00-6: 00$ PM	0
6:00-7:00 AM	0	$6: 00-7: 00$ PM	0
7:00-8:00 AM	330	$7: 00-8: 00$ PM	0
8:00-9:00 AM	365	$8: 00-9: 00$ PM	0
9:00-10:00AM	365	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	365	$10: 00-11: 00$ PM	0
11:00-12:00 PM	365	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 4th Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
W. 4th Street and Crescent Avenue

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WBISB) Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		90	290	410	790	90	700
8:00-9:00 AM		63	265	155	483	63	420
9:00-10:00AM		63	265	155	483	63	420
10:00-11:00 AM		63	265	155	483	63	420
11:00-12:00 PM		63	265	155	483	63	420
12:00-1:00 PM		63	265	155	483	63	420
1:00-2:00 PM		63	265	155	483	63	420
2:00-3:00 PM		63	265	155	483	63	420
3:00-4:00 PM		63	265	155	483	63	420
4:00-5:00 PM		100	420	220	740	100	640
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	694	2830	1870	5394	694	4700

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? No

Your intersection
want to use it?
CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 4th Street and Crescent Avenue
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1	Minor Street:	1
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	420
1:00-2:00 AM	0	1:00-2:00 PM	420
2:00-3:00 AM	0	2:00-3:00 PM	420
3:00-4:00 AM	0	3:00-4:00 PM	420
4:00-5:00 AM	0	4:00-5:00 PM	640
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	700	7:00-8:00 PM	0
8:00-9:00 AM	420	8:00-9:00 PM	0
9:00-10:00AM	420	9:00-10:00PM	0
10:00-11:00 AM	420	10:00-11:00 PM	0
11:00-12:00 PM	420	11:00-12:00 PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	63
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	63
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	63
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	63
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	100
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	90	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	63	$8: 00-9: 00$ PM	0
9:00-10:00AM	63	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	63	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	63	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 4th Street and Crescent Avenue
City/State: Covington, KY

Warrant 3B - Peak Hour

The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? No

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
W. 5th Street and Crescent Avenue

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	250		90	250	590	250	340
8:00-9:00 AM	250		83	154	487	250	237
9:00-10:00AM	250		83	154	487	250	237
10:00-11:00 AM	250		83	154	487	250	237
11:00-12:00 PM	250		83	154	487	250	237
12:00-1:00 PM	250		83	154	487	250	237
1:00-2:00 PM	250		83	154	487	250	237
2:00-3:00 PM	250		83	154	487	250	237
3:00-4:00 PM	250		83	154	487	250	237
4:00-5:00 PM	440		130	210	780	440	340
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	2690	0	884	1692	5266	2690	2576

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection
want to use it?
CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 5th Street and Crescent Avenue
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1	Minor Street:	1
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	237
1:00-2:00 AM	0	1:00-2:00 PM	237
2:00-3:00 AM	0	2:00-3:00 PM	237
3:00-4:00 AM	0	3:00-4:00 PM	237
4:00-5:00 AM	0	4:00-5:00 PM	340
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	340	7:00-8:00 PM	0
8:00-9:00 AM	237	8:00-9:00 PM	0
9:00-10:00AM	237	9:00-10:00PM	0
10:00-11:00 AM	237	10:00-11:00 PM	0
11:00-12:00 PM	237	11:00-12:00 PM	0


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	250
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	250
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	250
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	250
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	440
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	250	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	250	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	250	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	250	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	250	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 5th Street and Crescent Avenue
City/State: Covington, KY

Warrant 3B - Peak Hour

The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Pike Street and Bullock Street

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB)   Approach	$\begin{gathered} \hline \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		1040	780	480	2300	1040	1260
8:00-9:00 AM		715	221	563	1499	715	784
9:00-10:00AM		715	221	563	1499	715	784
10:00-11:00 AM		715	221	563	1499	715	784
11:00-12:00 PM		715	221	563	1499	715	784
12:00-1:00 PM		715	221	563	1499	715	784
1:00-2:00 PM		715	221	563	1499	715	784
2:00-3:00 PM		715	221	563	1499	715	784
3:00-4:00 PM		715	221	563	1499	715	784
4:00-5:00 PM		1530	260	1120	2910	1530	1380
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	8290	2808	6104	17202	8290	8912

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Pike Street and Bullock Street
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	3
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	784
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	784
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	784
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	784
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1380
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1260	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	784	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	784	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	784	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	784	11:00-12:00 PM	0


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	715
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	715
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	715
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	715
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1530
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1040	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	715	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	715	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	715	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	715	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
No
Combination of Warrants A and B Criteria Met? Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Pike Street and Bullock Street
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
Pike Street and Jillians Way

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	$\begin{gathered} \begin{array}{c} \text { Minor (WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Major(WB/SB) } \\ \text { Approach } \end{array} \\ \hline \hline \end{array}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	1730		880	470	3080	1730	1350
8:00-9:00 AM	924		280	501	1705	924	781
9:00-10:00AM	924		280	501	1705	924	781
10:00-11:00 AM	924		280	501	1705	924	781
11:00-12:00 PM	924		280	501	1705	924	781
12:00-1:00 PM	924		280	501	1705	924	781
1:00-2:00 PM	924		280	501	1705	924	781
2:00-3:00 PM	924		280	501	1705	924	781
3:00-4:00 PM	924		280	501	1705	924	781
4:00-5:00 PM	1000		470	1090	2560	1000	1560
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	10122	0	3590	5568	19280	10122	9158

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection
want to use it?
CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: Pike Street and Jillians Way
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	3
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	781
1:00-2:00 AM	0	1:00-2:00 PM	781
2:00-3:00 AM	0	2:00-3:00 PM	781
3:00-4:00 AM	0	3:00-4:00 PM	781
4:00-5:00 AM	0	4:00-5:00 PM	1560
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	1350	7:00-8:00 PM	0
8:00-9:00 AM	781	8:00-9:00 PM	0
9:00-10:00AM	781	9:00-10:00PM	0
10:00-11:00 AM	781	10:00-11:00 PM	0
11:00-12:00 PM	781	11:00-12:00 PM	0


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	924
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	924
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	924
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	924
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1000
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1730	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	924	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	924	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	924	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	924	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
No
Combination of Warrants A and B Criteria Met? Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Pike Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
W. 12th Street and Bullock Street

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB)   Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		990	280	270	1540	990	550
8:00-9:00 AM		750	132	267	1149	750	399
9:00-10:00AM		750	132	267	1149	750	399
10:00-11:00 AM		750	132	267	1149	750	399
11:00-12:00 PM		750	132	267	1149	750	399
12:00-1:00 PM		750	132	267	1149	750	399
1:00-2:00 PM		750	132	267	1149	750	399
2:00-3:00 PM		750	132	267	1149	750	399
3:00-4:00 PM		750	132	267	1149	750	399
4:00-5:00 PM		1270	120	460	1850	1270	580
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	8260	1456	2866	12582	8260	4322

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 12th Street and Bullock Street
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1	Minor Street:	2
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	399
1:00-2:00 AM	0	1:00-2:00 PM	399
2:00-3:00 AM	0	2:00-3:00 PM	399
3:00-4:00 AM	0	3:00-4:00 PM	399
4:00-5:00 AM	0	4:00-5:00 PM	580
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	550	7:00-8:00 PM	0
8:00-9:00 AM	399	8:00-9:00 PM	0
9:00-10:00AM	399	9:00-10:00PM	0
10:00-11:00 AM	399	10:00-11:00 PM	0
11.00-12.00 PM			

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	750
1:00-2:00 AM	0	$1: 00-2: 00$ PM	750
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	750
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	750
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1270
5:00-6:00 AM	0	$5: 00-6: 00$ PM	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	990	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	750	$8: 00-9: 00$ PM	0
9:00-10:00AM	750	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	750	$10: 00-11: 00$ PM	0
11:00-12:00 PM	750	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 12th Street and Bullock Street
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? No

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
W. 12th Street and Jillians Way

Date:

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \end{gathered}$	Minor (WBISB) Approach	$\begin{array}{c\|} \hline \text { Major(EB/NB) } \\ \text { Approach } \end{array}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	1140		630	780	2550	1140	1410
8:00-9:00 AM	909		254	440	1603	909	694
9:00-10:00AM	909		254	440	1603	909	694
10:00-11:00 AM	909		254	440	1603	909	694
11:00-12:00 PM	909		254	440	1603	909	694
12:00-1:00 PM	909		254	440	1603	909	694
1:00-2:00 PM	909		254	440	1603	909	694
2:00-3:00 PM	909		254	440	1603	909	694
3:00-4:00 PM	909		254	440	1603	909	694
4:00-5:00 PM	1200		260	660	2120	1200	920
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	9612	0	2922	4960	17494	9612	7882

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 12th Street and Jillians Way
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	3
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	694
1:00-2:00 AM	0	1:00-2:00 PM	694
2:00-3:00 AM	0	2:00-3:00 PM	694
3:00-4:00 AM	0	3:00-4:00 PM	694
4:00-5:00 AM	0	4:00-5:00 PM	920
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	1410	7:00-8:00 PM	0
8:00-9:00 AM	694	8:00-9:00 PM	0
9:00-10:00AM	694	9:00-10:00PM	0
10:00-11:00 AM	694	10:00-11:00 PM	0
11:00-12.00 PM	69		

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	909
1:00-2:00 AM	0	$1: 00-2: 00$ PM	909
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	909
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	909
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1200
5:00-6:00 AM	0	$5: 00-6: 00$ PM	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1140	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	909	$8: 00-9: 00$ PM	0
9:00-10:00AM	909	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	909	$10: 00-11: 00$ PM	0
11:00-12:00 PM	909	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
No
Combination of Warrants $A$ and $B$ Criteria Met?
No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 12th Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Kyles Lane and I-71/75 SB Ramps

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		690	810	850	2350	690	1660
8:00-9:00 AM		591	595	690	1876	591	1285
9:00-10:00AM		591	595	690	1876	591	1285
10:00-11:00 AM		591	595	690	1876	591	1285
11:00-12:00 PM		591	595	690	1876	591	1285
12:00-1:00 PM		591	595	690	1876	591	1285
1:00-2:00 PM		591	595	690	1876	591	1285
2:00-3:00 PM		591	595	690	1876	591	1285
3:00-4:00 PM		591	595	690	1876	591	1285
4:00-5:00 PM		1140	970	1150	3260	1140	2120
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	6558	6540	7520	20618	6558	14060

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: Kyles Lane and I-71/75 SB Ramps
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

| Major Street: | 2 | Minor Street: | 2 |
| :--- | :---: | :---: | :---: | :---: |
|  | 2 |  |  |
| Vehicles per hour on major street (total of both approaches): |  |  |  |
| 12:00-1:00 AM | 0 | 12:00-1:00 PM | 1285 |
| 1:00-2:00 AM | 0 | $1: 00-2: 00$ PM | 1285 |
| 2:00-3:00 AM | 0 | $2: 00-3: 00$ PM | 1285 |
| 3:00-4:00 AM | 0 | $3: 00-4: 00$ PM | 1285 |
| 4:00-5:00 AM | 0 | $4: 00-5: 00$ PM | 2120 |
| 5:00-6:00 AM | 0 | $5: 00-6: 00$ PM | 0 |
| 6:00-7:00 AM | 0 | $6: 00-7: 00$ PM | 0 |
| 7:00-8:00 AM | 1660 | $7: 00-8: 00$ PM | 0 |
| 8:00-9:00 AM | 1285 | $8: 00-9: 00$ PM | 0 |
| 9:00-10:00AM | 1285 | $9: 00-10: 00 \mathrm{PM}$ | 0 |
| 10:00-11:00 AM | 1285 | 10:00-11:00 PM | 0 |
| 11:00-12:00 PM | 1285 | $11: 00-12: 00$ PM | 0 |

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	591
1:00-2:00 AM	0	$1: 00-2: 00$ PM	591
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	591
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	591
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1140
5:00-6:00 AM	0	$5: 00-6: 00$ PM	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	690	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	591	$8: 00-9: 00$ PM	0
9:00-10:00AM	591	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	591	$10: 00-11: 00$ PM	0
11:00-12:00 PM	591	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
Yes
Combination of Warrants A and B Criteria Met? Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Kyles Lane and I-71/75 SB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
Kyles Lane and I-71/75 NB Ramps

Date:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	$\begin{gathered} \begin{array}{c} \text { Minor (WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	440		1120	1660	3220	440	2780
8:00-9:00 AM	394		863	959	2216	394	1822
9:00-10:00AM	394		863	959	2216	394	1822
10:00-11:00 AM	394		863	959	2216	394	1822
11:00-12:00 PM	394		863	959	2216	394	1822
12:00-1:00 PM	394		863	959	2216	394	1822
1:00-2:00 PM	394		863	959	2216	394	1822
2:00-3:00 PM	394		863	959	2216	394	1822
3:00-4:00 PM	394		863	959	2216	394	1822
4:00-5:00 PM	720		1460	1320	3500	720	2780
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	4312	0	9484	10652	24448	4312	20136

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? No

Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff					
Intersection: Kyles Lane and I-71/75 NB Ram   City/State: Covington, KY   Date 7/8/2010   Warrant 1 - Eight-Hour Vehicular Volume			Performed by:	AMW	
Number of lanes of moving traffic for moving traffic on each approach:					
	Major Street:	2	Minor Street:	2	
Vehicles per hour on major street (total of both approaches):					
	12:00-1:00 AM	0	12:00-1:00 PM	1822	
	1:00-2:00 AM	0	1:00-2:00 PM	1822	
	2:00-3:00 AM	0	2:00-3:00 PM	1822	
	3:00-4:00 AM	0	3:00-4:00 PM	1822	
	4:00-5:00 AM	0	4:00-5:00 PM	2780	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	2780	7:00-8:00 PM	0	
	8:00-9:00 AM	1822	8:00-9:00 PM	0	
	9:00-10:00AM	1822	9:00-10:00PM	0	
	10:00-11:00 AM	1822	10:00-11:00 PM	0	
	11:00-12:00 PM	1822	11:00-12:00 PM	0	
Vehicles per hour on higher-volume minor street approach (one did					ction o
	12:00-1:00 AM	0	12:00-1:00 PM	394	
	1:00-2:00 AM	0	1:00-2:00 PM	394	
	2:00-3:00 AM	0	2:00-3:00 PM	394	
	3:00-4:00 AM	0	3:00-4:00 PM	394	
	4:00-5:00 AM	0	4:00-5:00 PM	720	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	440	7:00-8:00 PM	0	
	8:00-9:00 AM	394	8:00-9:00 PM	0	
	9:00-10:00AM	394	9:00-10:00PM	0	
	10:00-11:00 AM	394	10:00-11:00 PM	0	
	11:00-12:00 PM	394	11:00-12:00 PM	0	
	Is the intersection using the reduced volume criteria based on speed or population? No				
	A. Is the Minimum Vehicular Volume Warrant Met?				
	B. Is the Interruption of Continuous Traffic Met?				Yes
	Combination of Warrants $A$ and $B$ Criteria Met?   (Use only when Conditions A and B are both not satisified)				Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Kyles Lane and I-71/75 NB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Dixie Highway and I-71/75 SB Ramps
City/State:
Covington, KY
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	$\begin{array}{\|c} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{array}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		190	660	1510	2360	190	2170
8:00-9:00 AM		272	601	863	1736	272	1464
9:00-10:00AM		272	601	863	1736	272	1464
10:00-11:00 AM		272	601	863	1736	272	1464
11:00-12:00 PM		272	601	863	1736	272	1464
12:00-1:00 PM		272	601	863	1736	272	1464
1:00-2:00 PM		272	601	863	1736	272	1464
2:00-3:00 PM		272	601	863	1736	272	1464
3:00-4:00 PM		272	601	863	1736	272	1464
4:00-5:00 PM		680	1170	740	2590	680	1910
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	3046	6638	9154	18838	3046	15792

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff					
Intersection: Dixie Highway and I-71/75 SB Ramps City/State: Covington, KY					
Date	7/8/2010		Performed by:	AMW	
Warrant 1 - Eight-Hour Vehicular Volume					
Number of lanes of moving traffic for moving traffic on each approach:					
	Major Street:	2	Minor Street:	2	
Vehicles per hour on major street (total of both approaches):					
	12:00-1:00 AM	0	12:00-1:00 PM	1464	
	1:00-2:00 AM	0	1:00-2:00 PM	1464	
	2:00-3:00 AM	0	2:00-3:00 PM	1464	
	3:00-4:00 AM	0	3:00-4:00 PM	1464	
	4:00-5:00 AM	0	4:00-5:00 PM	1910	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	2170	7:00-8:00 PM	0	
	8:00-9:00 AM	1464	8:00-9:00 PM	0	
	9:00-10:00AM	1464	9:00-10:00PM	0	
	10:00-11:00 AM	1464	10:00-11:00 PM	0	
	11:00-12:00 PM	1464	11:00-12:00 PM	0	
					Vehicles per hour on higher-volume minor street approach (one direction only):
	12:00-1:00 AM	0	12:00-1:00 PM	272	
	1:00-2:00 AM	0	1:00-2:00 PM	272	
	2:00-3:00 AM	0	2:00-3:00 PM	272	
	3:00-4:00 AM	0	3:00-4:00 PM	272	
	4:00-5:00 AM	0	4:00-5:00 PM	680	
	5:00-6:00 AM	0	5:00-6:00 PM	0	
	6:00-7:00 AM	0	6:00-7:00 PM	0	
	7:00-8:00 AM	190	7:00-8:00 PM	0	
	8:00-9:00 AM	272	8:00-9:00 PM	0	
	9:00-10:00AM	272	9:00-10:00PM	0	
	10:00-11:00 AM	272	10:00-11:00 PM	0	
	11:00-12:00 PM	272	11:00-12:00 PM	0	
Is the intersection using the reduced volume criteria based on sp or population? No					
A. Is the Minimum Vehicular Volume Warrant Met? Yes					
	B. Is the Interruption of Continuous Traffic Met?				Yes
	Combination of Warrants A and B Criteria Met?   (Use only when Conditions A and B are both not satisified)				Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Dixie Highway and I-71/75 SB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Dixie Highway and I-71/75 NB Ramps
City/State:
Covington, KY
Date:
7/8/2010 Performed By: AMW

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	280		540	2110	2930	280	2650
8:00-9:00 AM	248		550	977	1775	248	1527
9:00-10:00AM	248		550	977	1775	248	1527
10:00-11:00 AM	248		550	977	1775	248	1527
11:00-12:00 PM	248		550	977	1775	248	1527
12:00-1:00 PM	248		550	977	1775	248	1527
1:00-2:00 PM	248		550	977	1775	248	1527
2:00-3:00 PM	248		550	977	1775	248	1527
3:00-4:00 PM	248		550	977	1775	248	1527
4:00-5:00 PM	380		1210	810	2400	380	2020
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	2644	0	6150	10736	19530	2644	16886

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$


# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Dixie Highway and I-71/75 NB Ramps
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
W. 9th Street and Jillians Way

Date:
Covington, KY
7/8/2010 Performed By: AMW

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Minor (WB/SB) } \\ \text { Approach } \\ \hline \end{array}$	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	340		200	300	840	340	500
8:00-9:00 AM	287		61	170	518	287	231
9:00-10:00AM	287		61	170	518	287	231
10:00-11:00 AM	287		61	170	518	287	231
11:00-12:00 PM	287		61	170	518	287	231
12:00-1:00 PM	287		61	170	518	287	231
1:00-2:00 PM	287		61	170	518	287	231
2:00-3:00 PM	287		61	170	518	287	231
3:00-4:00 PM	287		61	170	518	287	231
4:00-5:00 PM	310		120	310	740	310	430
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	2946	0	808	1970	5724	2946	2778

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 9th Street and Jillians Way
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1	Minor Street:	3
	3		
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	231
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	231
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	231
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	231
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	430
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	500	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	231	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	231	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	231	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	231	$11: 00-12: 00 \mathrm{PM}$	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	287
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	287
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	287
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	287
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	310
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	340	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	287	$8: 00-9: 00$ PM	0
9:00-10:00AM	287	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	287	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	287	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 9th Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? NO

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
W. 9th Street and Bullock Street

Date:
Covington, KY
7/8/2010 Performed By: AMW

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Minor (WB/SB) } \\ \text { Approach } \\ \hline \end{array}$	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		800	240	250	1290	800	490
8:00-9:00 AM		536	114	155	805	536	269
9:00-10:00AM		536	114	155	805	536	269
10:00-11:00 AM		536	114	155	805	536	269
11:00-12:00 PM		536	114	155	805	536	269
12:00-1:00 PM		536	114	155	805	536	269
1:00-2:00 PM		536	114	155	805	536	269
2:00-3:00 PM		536	114	155	805	536	269
3:00-4:00 PM		536	114	155	805	536	269
4:00-5:00 PM		1180	250	260	1690	1180	510
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	6268	1402	1750	9420	6268	3152

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 9th Street and Bullock Street
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	1		
	Minor Street:		3
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	269
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	269
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	269
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	269
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	510
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	490	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	269	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	269	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	269	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	269	$11: 00-12: 00 \mathrm{PM}$	0


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	536
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	536
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	536
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	536
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1180
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	800	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	536	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	536	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	536	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	536	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 9th Street and Bullock Street
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection:
City/State:
W. 5th Street and Jillians Way

Date:
Covington, KY
7/8/2010 Performed By: AMW

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	Minor (WB/SB)   Approach	$\begin{gathered} \hline \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	560		780		1340	560	780
8:00-9:00 AM	340		585		925	340	585
9:00-10:00AM	340		585		925	340	585
10:00-11:00 AM	340		585		925	340	585
11:00-12:00 PM	340		585		925	340	585
12:00-1:00 PM	340		585		925	340	585
1:00-2:00 PM	340		585		925	340	585
2:00-3:00 PM	340		585		925	340	585
3:00-4:00 PM	340		585		925	340	585
4:00-5:00 PM	430		530		960	430	530
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	3710	0	5990	0	9700	3710	5990

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: W. 5th Street and Jillians Way
City/State: Covington, KY
Date 7/8/2010 Performed by: AMW

## Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	2
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	585
1:00-2:00 AM	0	1:00-2:00 PM	585
2:00-3:00 AM	0	2:00-3:00 PM	585
3:00-4:00 AM	0	3:00-4:00 PM	585
4:00-5:00 AM	0	4:00-5:00 PM	530
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	780	7:00-8:00 PM	0
8:00-9:00 AM	585	8:00-9:00 PM	0
9:00-10:00AM	585	9:00-10:00PM	0
10:00-11:00 AM	585	10:00-11:00 PM	0
11:00-12:00 PM	585	11:00-12:00 PM	


Vehicles per hour on higher-volume minor street approach (one direction only):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	340
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	340
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	340
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	340
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	430
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	560	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	340	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	340	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	340	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	340	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
No
B. Is the Interruption of Continuous Traffic Met? No
Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: W. 5th Street and Jillians Way
City/State: Covington, KY
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B


Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Findlay Street \& Western Avenue
City/State:
Cincinnati, Ohio
Date:
7/8/2010 Performed By: JRL

	$\begin{gathered} \begin{array}{c} \text { Minor (EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		670	140	110	920	670	250
8:00-9:00 AM		414	112	69	595	414	181
9:00-10:00AM		414	112	69	595	414	181
10:00-11:00 AM		414	112	69	595	414	181
11:00-12:00 PM		414	112	69	595	414	181
12:00-1:00 PM		414	112	69	595	414	181
1:00-2:00 PM		414	112	69	595	414	181
2:00-3:00 PM		414	112	69	595	414	181
3:00-4:00 PM		414	112	69	595	414	181
4:00-5:00 PM		410	250	80	740	410	330
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	4392	1286	742	6420	4392	2028

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$
No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Findlay Street \& Western Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Findlay Street \& Western Avenue
City/State:
Cincinnati, Ohio
Date:
7/8/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		270	220	120	610	270	340
8:00-9:00 AM		614	114	53	781	614	167
9:00-10:00AM		614	114	53	781	614	167
10:00-11:00 AM		614	114	53	781	614	167
11:00-12:00 PM		614	114	53	781	614	167
12:00-1:00 PM		614	114	53	781	614	167
1:00-2:00 PM		614	114	53	781	614	167
2:00-3:00 PM		614	114	53	781	614	167
3:00-4:00 PM		614	114	53	781	614	167
4:00-5:00 PM		350	200	70	620	350	270
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	5532	1332	614	7478	5532	1946

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Findlay Street \& Western Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Findlay Street \& Western Avenue
City/State:
Cincinnati, Ohio
Date:
7/8/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		280	360	160	800	280	520
8:00-9:00 AM		283	158	84	525	283	242
9:00-10:00AM		283	158	84	525	283	242
10:00-11:00 AM		283	158	84	525	283	242
11:00-12:00 PM		283	158	84	525	283	242
12:00-1:00 PM		283	158	84	525	283	242
1:00-2:00 PM		283	158	84	525	283	242
2:00-3:00 PM		283	158	84	525	283	242
3:00-4:00 PM		283	158	84	525	283	242
4:00-5:00 PM		450	270	100	820	450	370
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	2994	1894	932	5820	2994	2826

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Findlay Street \& Western Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? No

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Gest Street \& Freeman Avenue

Date:
Cincinnati, Ohio
7/8/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	560	700	250	340	1850	700	590
8:00-9:00 AM	358	350	259	232	1199	358	491
9:00-10:00AM	358	350	259	232	1199	358	491
10:00-11:00 AM	358	350	259	232	1199	358	491
11:00-12:00 PM	358	350	259	232	1199	358	491
12:00-1:00 PM	358	350	259	232	1199	358	491
1:00-2:00 PM	358	350	259	232	1199	358	491
2:00-3:00 PM	358	350	259	232	1199	358	491
3:00-4:00 PM	358	350	259	232	1199	358	491
4:00-5:00 PM	420	530	430	280	1660	530	710
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	3844	4030	2752	2476	13102	4094	5228

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Gest Street \& Freeman Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Gest Street \& Freeman Avenue

Date:
Cincinnati, Ohio
7/8/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c} \hline \text { Major(EB/NB) } \\ \text { Approach } \end{array}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	570	380	440	550	1940	570	990
8:00-9:00 AM	325	0	531	263	1119	325	794
9:00-10:00AM	325	0	531	263	1119	325	794
10:00-11:00 AM	325	0	531	263	1119	325	794
11:00-12:00 PM	325	0	531	263	1119	325	794
12:00-1:00 PM	325	0	531	263	1119	325	794
1:00-2:00 PM	325	0	531	263	1119	325	794
2:00-3:00 PM	325	0	531	263	1119	325	794
3:00-4:00 PM	325	0	531	263	1119	325	794
4:00-5:00 PM	440	450	600	430	1920	450	1030
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	3610	830	5288	3084	12812	3620	8372

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
No
Combination of Warrants $A$ and $B$ Criteria Met?
Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Gest Street \& Freeman Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Gest Street \& Freeman Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL $\qquad$

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \end{gathered}$	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	540	810	240	390	1980	810	630
8:00-9:00 AM	332	413	251	270	1266	413	521
9:00-10:00AM	332	413	251	270	1266	413	521
10:00-11:00 AM	332	413	251	270	1266	413	521
11:00-12:00 PM	332	413	251	270	1266	413	521
12:00-1:00 PM	332	413	251	270	1266	413	521
1:00-2:00 PM	332	413	251	270	1266	413	521
2:00-3:00 PM	332	413	251	270	1266	413	521
3:00-4:00 PM	332	413	251	270	1266	413	521
4:00-5:00 PM	460	610	410	390	1870	610	800
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	3656	4724	2658	2940	13978	4724	5598

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Gest Street \& Freeman Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Western Hills Viaduct LOWER DECK \& Spring Grove

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	440		520	760	1720	440	1280
8:00-9:00 AM	276		650	528	1454	276	1178
9:00-10:00AM	276		650	528	1454	276	1178
10:00-11:00 AM	276		650	528	1454	276	1178
11:00-12:00 PM	276		650	528	1454	276	1178
12:00-1:00 PM	276		650	528	1454	276	1178
1:00-2:00 PM	276		650	528	1454	276	1178
2:00-3:00 PM	276		650	528	1454	276	1178
3:00-4:00 PM	276		650	528	1454	276	1178
4:00-5:00 PM	220		1550	840	2610	220	2390
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	2868	0	7270	5824	15962	2868	13094

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000 ? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: Western Hills Viaduct LOWER DECK \& Spring Grove
City/State: Cincinnati, Ohio
Date 7/9/2010 Performed by: JRL
Warrant 1 - Eight-Hour Vehicular Volume
Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	2
	2		
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	1178
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	1178
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	1178
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	1178
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	2390
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1280	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	1178	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	1178	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	1178	$10: 00-11: 00 \mathrm{PM}$	0
11:00-12:00 PM	1178	$11: 00-12: 00 \mathrm{PM}$	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	276
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	276
$2: 00-3: 00 \mathrm{AM}$	0	$2: 00-3: 00 \mathrm{PM}$	276
$3: 00-4: 00 \mathrm{AM}$	0	$3: 00-4: 00 \mathrm{PM}$	276
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	220
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	440	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	276	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	276	$9: 00-10: 00 \mathrm{PM}$	0
$10: 00-11: 00 \mathrm{AM}$	276	$10: 00-11: 00 \mathrm{PM}$	0
$11: 00-12: 00 \mathrm{PM}$	276	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
Yes
Combination of Warrants A and B Criteria Met?
Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Western Hills Viaduct LOWER DECK \& Spring Grove
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Western Hills Viaduct LOWER DECK \& Spring Grove

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	410		740	1080	2230	410	1820
8:00-9:00 AM	324		913	714	1951	324	1627
9:00-10:00AM	324		913	714	1951	324	1627
10:00-11:00 AM	324		913	714	1951	324	1627
11:00-12:00 PM	324		913	714	1951	324	1627
12:00-1:00 PM	324		913	714	1951	324	1627
1:00-2:00 PM	324		913	714	1951	324	1627
2:00-3:00 PM	324		913	714	1951	324	1627
3:00-4:00 PM	324		913	714	1951	324	1627
4:00-5:00 PM	310		2130	1040	3480	310	3170
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	3312	0	10174	7832	21318	3312	18006

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$


# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Western Hills Viaduct LOWER DECK \& Spring Grove
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Western Hills Viaduct LOWER DECK \& Spring Grove

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	400		570	890	1860	400	1460
8:00-9:00 AM	228		703	605	1536	228	1308
9:00-10:00AM	228		703	605	1536	228	1308
10:00-11:00 AM	228		703	605	1536	228	1308
11:00-12:00 PM	228		703	605	1536	228	1308
12:00-1:00 PM	228		703	605	1536	228	1308
1:00-2:00 PM	228		703	605	1536	228	1308
2:00-3:00 PM	228		703	605	1536	228	1308
3:00-4:00 PM	228		703	605	1536	228	1308
4:00-5:00 PM	160		1650	940	2750	160	2590
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	2384	0	7844	6670	16898	2384	14514

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff				
Intersection: Western Hills Viaduct LOWER DECK \& Spring Grove City/State: Cincinnati, Ohio Date 7/9/2010 Performed by:   Warrant 1 - Eight-Hour Vehicular Volume				
Number of lanes of moving traffic for moving traffic on each approach:				
Major Street:	2	Minor Street:	2	
hicles per hour on major street (total of both approaches):				
12:00-1:00 AM	0	12:00-1:00 PM	1308	
1:00-2:00 AM	0	1:00-2:00 PM	1308	
2:00-3:00 AM	0	2:00-3:00 PM	1308	
3:00-4:00 AM	0	3:00-4:00 PM	1308	
4:00-5:00 AM	0	4:00-5:00 PM	2590	
5:00-6:00 AM	0	5:00-6:00 PM	0	
6:00-7:00 AM	0	6:00-7:00 PM	0	
7:00-8:00 AM	1460	7:00-8:00 PM	0	
8:00-9:00 AM	1308	8:00-9:00 PM	0	
9:00-10:00AM	1308	9:00-10:00PM	0	
10:00-11:00 AM	1308	10:00-11:00 PM	0	
11:00-12:00 PM	1308	11:00-12:00 PM	0	
Vehicles per hour on higher-volume minor street approach (one direction only):				
12:00-1:00 AM	0	12:00-1:00 PM	228	
1:00-2:00 AM	0	1:00-2:00 PM	228	
2:00-3:00 AM	0	2:00-3:00 PM	228	
3:00-4:00 AM	0	3:00-4:00 PM	228	
4:00-5:00 AM	0	4:00-5:00 PM	160	
5:00-6:00 AM	0	5:00-6:00 PM	0	
6:00-7:00 AM	0	6:00-7:00 PM	0	
7:00-8:00 AM	400	7:00-8:00 PM	0	
8:00-9:00 AM	228	8:00-9:00 PM	0	
9:00-10:00AM	228	9:00-10:00PM	0	
10:00-11:00 AM	228	10:00-11:00 PM	0	
11:00-12:00 PM	228	11:00-12:00 PM	0	
Is the intersection using the reduced volume criteria based on speed or population? No				
A. Is the Minimum Vehicular Volume Warrant Met? Yes				
B. Is the Interruption of Continuous Traffic Met? Yes				
	Combination of Warrants $A$ and $B$ Criteria Met?			

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Western Hills Viaduct LOWER DECK \& Spring Grove
City/State: Cincinnati, Ohio

## Warrant 3B - Peak Hour

The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
9th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL $\qquad$

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		430	500	20	950	430	520
8:00-9:00 AM		644	392	46	1082	644	438
9:00-10:00AM		644	392	46	1082	644	438
10:00-11:00 AM		644	392	46	1082	644	438
11:00-12:00 PM		644	392	46	1082	644	438
12:00-1:00 PM		644	392	46	1082	644	438
1:00-2:00 PM		644	392	46	1082	644	438
2:00-3:00 PM		644	392	46	1082	644	438
3:00-4:00 PM		644	392	46	1082	644	438
4:00-5:00 PM		1490	630	130	2250	1490	760
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	7072	4266	518	11856	7072	4784

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: 9th Street \& Central Avenue
City/State: Cincinnati, Ohio
Date 7/9/2010 Performed by: JRL
Warrant 1 - Eight-Hour Vehicular Volume
Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	4	Minor Street:	4
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	438
1:00-2:00 AM	0	1:00-2:00 PM	438
2:00-3:00 AM	0	2:00-3:00 PM	438
3:00-4:00 AM	0	3:00-4:00 PM	438
4:00-5:00 AM	0	4:00-5:00 PM	760
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	520	7:00-8:00 PM	0
8:00-9:00 AM	438	8:00-9:00 PM	0
9:00-10:00AM	438	9:00-10:00PM	0
10:00-11:00 AM	438	10:00-11:00 PM	0
11:00-12:00 PM	438	11:00-12:00 PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	644
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	644
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	644
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	644
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1490
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	430	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	644	$8: 00-9: 00$ PM	0
9:00-10:00AM	644	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	644	$10: 00-11: 00 \mathrm{PM}$	0
$11: 00-12: 00 \mathrm{PM}$	644	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and BCriteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 9th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
9th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL $\qquad$

	Minor (EB/NB) Approach	$\begin{gathered} \begin{array}{c} \text { Minor (WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		290	350	20	660	290	370
8:00-9:00 AM		486	314	45	845	486	359
9:00-10:00AM		486	314	45	845	486	359
10:00-11:00 AM		486	314	45	845	486	359
11:00-12:00 PM		486	314	45	845	486	359
12:00-1:00 PM		486	314	45	845	486	359
1:00-2:00 PM		486	314	45	845	486	359
2:00-3:00 PM		486	314	45	845	486	359
3:00-4:00 PM		486	314	45	845	486	359
4:00-5:00 PM		870	380	70	1320	870	450
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	5048	3242	450	8740	5048	3692

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: 9th Street \& Central Avenue
City/State: Cincinnati, Ohio
$\begin{array}{lll}\text { Date 7/9/2010 } & \text { Performed by: JRL } \\ \text { Warrant 1 } & \text { Eight-Hour Vehicular Volume } & \end{array}$
Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	4	Minor Street:	4
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	359
1:00-2:00 AM	0	1:00-2:00 PM	359
2:00-3:00 AM	0	2:00-3:00 PM	359
3:00-4:00 AM	0	3:00-4:00 PM	359
4:00-5:00 AM	0	4:00-5:00 PM	450
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	370	7:00-8:00 PM	0
8:00-9:00 AM	359	8:00-9:00 PM	0
9:00-10:00AM	359	9:00-10:00PM	0
10:00-11:00 AM	359	10:00-11:00 PM	0
11:00-12:00 PM	359	11:00-12:00 PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	12:00-1:00 PM	486
1:00-2:00 AM	0	1:00-2:00 PM	486
2:00-3:00 AM	0	2:00-3:00 PM	486
3:00-4:00 AM	0	3:00-4:00 PM	486
4:00-5:00 AM	0	4:00-5:00 PM	870
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	290	7:00-8:00 PM	0
8:00-9:00 AM	486	8:00-9:00 PM	0
9:00-10:00AM	486	9:00-10:00PM	0
10:00-11:00 AM	486	10:00-11:00 PM	0
11:00-12:00 PM	486	11:00-12:00 PM	0

Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 9th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
9th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL $\qquad$

	$\begin{gathered} \hline \text { Minor (EB/NB) } \\ \text { Approach } \end{gathered}$	Minor (WB/SB) Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		310	420	30	760	310	450
8:00-9:00 AM		546	290	36	872	546	326
9:00-10:00AM		546	290	36	872	546	326
10:00-11:00 AM		546	290	36	872	546	326
11:00-12:00 PM		546	290	36	872	546	326
12:00-1:00 PM		546	290	36	872	546	326
1:00-2:00 PM		546	290	36	872	546	326
2:00-3:00 PM		546	290	36	872	546	326
3:00-4:00 PM		546	290	36	872	546	326
4:00-5:00 PM		1230	500	140	1870	1230	640
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	5908	3240	458	9606	5908	3698

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: 9th Street \& Central Avenue
City/State: Cincinnati, Ohio
$\begin{array}{lll}\text { Date 7/9/2010 } & \text { Performed by: JRL } \\ \text { Warrant 1 } & \text { Eight-Hour Vehicular Volume } & \end{array}$

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	4	Minor Street:	4
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	326
1:00-2:00 AM	0	1:00-2:00 PM	326
2:00-3:00 AM	0	2:00-3:00 PM	326
3:00-4:00 AM	0	3:00-4:00 PM	326
4:00-5:00 AM	0	4:00-5:00 PM	640
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	450	7:00-8:00 PM	0
8:00-9:00 AM	326	8:00-9:00 PM	0
9:00-10:00AM	326	9:00-10:00PM	0
10:00-11:00 AM	326	10:00-11:00 PM	0
11:00-12:00 PM	326	11:00-12:00 PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	546
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	546
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	546
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	546
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1230
$5: 00-6: 00$ AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	310	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	546	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	546	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	546	$10: 00-11: 00 \mathrm{PM}$	0
$11: 00-12: 00$ PM	546	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 9th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
7th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	2120		410		2530	2120	410
8:00-9:00 AM	890		254		1144	890	254
9:00-10:00AM	890		254		1144	890	254
10:00-11:00 AM	890		254		1144	890	254
11:00-12:00 PM	890		254		1144	890	254
12:00-1:00 PM	890		254		1144	890	254
1:00-2:00 PM	890		254		1144	890	254
2:00-3:00 PM	890		254		1144	890	254
3:00-4:00 PM	890		254		1144	890	254
4:00-5:00 PM	690		350		1040	690	350
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	9930	0	2792	0	12722	9930	2792

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: 7th Street \& Central Avenue   City/State: Cincinnati, Ohio   Date 7/9/2010   Warrant 1 - Eight-Hour Vehicular Volume			Performed by	
	Number of lanes of moving traffic for moving traffic on each approach:			
	Major Street:	3	Minor Street:	4
	Vehicles per hour on major street (total of both approaches):			
	12:00-1:00 AM	0	12:00-1:00 PM	254
	1:00-2:00 AM	0	1:00-2:00 PM	254
	2:00-3:00 AM	0	2:00-3:00 PM	254
	3:00-4:00 AM	0	3:00-4:00 PM	254
	4:00-5:00 AM	0	4:00-5:00 PM	350
	5:00-6:00 AM	0	5:00-6:00 PM	0
	6:00-7:00 AM	0	6:00-7:00 PM	0
	7:00-8:00 AM	410	7:00-8:00 PM	0
	8:00-9:00 AM	254	8:00-9:00 PM	0
	9:00-10:00AM	254	9:00-10:00PM	0
	10:00-11:00 AM	254	10:00-11:00 PM	0
	11:00-12:00 PM	254	11:00-12:00 PM	0
	Vehicles per hour on higher-volume minor street approach (one direction only)			
	12:00-1:00 AM	0	12:00-1:00 PM	890
	1:00-2:00 AM	0	1:00-2:00 PM	890
	2:00-3:00 AM	0	2:00-3:00 PM	890
	3:00-4:00 AM	0	3:00-4:00 PM	890
	4:00-5:00 AM	0	4:00-5:00 PM	690
	5:00-6:00 AM	0	5:00-6:00 PM	0
	6:00-7:00 AM	0	6:00-7:00 PM	0
	7:00-8:00 AM	2120	7:00-8:00 PM	0
	8:00-9:00 AM	890	8:00-9:00 PM	0
	9:00-10:00AM	890	9:00-10:00PM	0
	10:00-11:00 AM	890	10:00-11:00 PM	0
	11:00-12:00 PM	890	11:00-12:00 PM	0

Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 7th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
7th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	2200		630		2830	2200	630
8:00-9:00 AM	876		320		1196	876	320
9:00-10:00AM	876		320		1196	876	320
10:00-11:00 AM	876		320		1196	876	320
11:00-12:00 PM	876		320		1196	876	320
12:00-1:00 PM	876		320		1196	876	320
1:00-2:00 PM	876		320		1196	876	320
2:00-3:00 PM	876		320		1196	876	320
3:00-4:00 PM	876		320		1196	876	320
4:00-5:00 PM	700		500		1200	700	500
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	9908	0	3690	0	13598	9908	3690

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 7th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
7th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	2220		390		2610	2220	390
8:00-9:00 AM	938		234		1172	938	234
9:00-10:00AM	938		234		1172	938	234
10:00-11:00 AM	938		234		1172	938	234
11:00-12:00 PM	938		234		1172	938	234
12:00-1:00 PM	938		234		1172	938	234
1:00-2:00 PM	938		234		1172	938	234
2:00-3:00 PM	938		234		1172	938	234
3:00-4:00 PM	938		234		1172	938	234
4:00-5:00 PM	750		320		1070	750	320
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	10474	0	2582	0	13056	10474	2582

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 7th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
6th Street \& Central Avenue

Date:

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		540	310		850	540	310
8:00-9:00 AM		577	195		772	577	195
9:00-10:00AM		577	195		772	577	195
10:00-11:00 AM		577	195		772	577	195
11:00-12:00 PM		577	195		772	577	195
12:00-1:00 PM		577	195		772	577	195
1:00-2:00 PM		577	195		772	577	195
2:00-3:00 PM		577	195		772	577	195
3:00-4:00 PM		577	195		772	577	195
4:00-5:00 PM		1460	330		1790	1460	330
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	6616	2200	0	8816	6616	2200

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: 6th Street \& Central Avenue
City/State: Cincinnati, Ohio
$\begin{array}{lll}\text { Date 7/9/2010 } & \text { Performed by: JRL } \\ \text { Warrant 1 } & \text { Eight-Hour Vehicular Volume } & \end{array}$
Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	4
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	195
1:00-2:00 AM	0	1:00-2:00 PM	195
2:00-3:00 AM	0	2:00-3:00 PM	195
3:00-4:00 AM	0	3:00-4:00 PM	195
4:00-5:00 AM	0	4:00-5:00 PM	330
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	310	7:00-8:00 PM	0
8:00-9:00 AM	195	8:00-9:00 PM	0
9:00-10:00AM	195	9:00-10:00PM	0
10:00-11:00 AM	195	10:00-11:00 PM	0
11:00-12:00 PM	195	11:00-12:00 PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	577
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	577
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	577
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	577
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	1460
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	540	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	577	$8: 00-9: 00$ PM	0
9:00-10:00AM	577	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	577	$10: 00-11: 00 \mathrm{PM}$	0
$11: 00-12: 00 \mathrm{PM}$	577	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 6th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
6th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL $\qquad$

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	820	540	400		1760	820	400
8:00-9:00 AM	396	659	262		1317	659	262
9:00-10:00AM	396	659	262		1317	659	262
10:00-11:00 AM	396	659	262		1317	659	262
11:00-12:00 PM	396	659	262		1317	659	262
12:00-1:00 PM	396	659	262		1317	659	262
1:00-2:00 PM	396	659	262		1317	659	262
2:00-3:00 PM	396	659	262		1317	659	262
3:00-4:00 PM	396	659	262		1317	659	262
4:00-5:00 PM	560	1150	360		2070	1150	360
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	4548	6962	2856	0	14366	7242	2856

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 6th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
6th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL $\qquad$

	Minor (EB/NB) Approach	$\begin{gathered} \hline \text { Minor (WB/SB) } \\ \text { Approach } \end{gathered}$	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		370	290		660	370	290
8:00-9:00 AM		463	184		647	463	184
9:00-10:00AM		463	184		647	463	184
10:00-11:00 AM		463	184		647	463	184
11:00-12:00 PM		463	184		647	463	184
12:00-1:00 PM		463	184		647	463	184
1:00-2:00 PM		463	184		647	463	184
2:00-3:00 PM		463	184		647	463	184
3:00-4:00 PM		463	184		647	463	184
4:00-5:00 PM		1180	290		1470	1180	290
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	5254	2052	0	7306	5254	2052

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 6th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
5th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	Minor (WB/SB)   Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	1730		300	90	2120	1730	390
8:00-9:00 AM	632		249	89	970	632	338
9:00-10:00AM	632		249	89	970	632	338
10:00-11:00 AM	632		249	89	970	632	338
11:00-12:00 PM	632		249	89	970	632	338
12:00-1:00 PM	632		249	89	970	632	338
1:00-2:00 PM	632		249	89	970	632	338
2:00-3:00 PM	632		249	89	970	632	338
3:00-4:00 PM	632		249	89	970	632	338
4:00-5:00 PM	650		480	200	1330	650	680
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	7436	0	2772	1002	11210	7436	3774

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: 5th Street \& Central Avenue
City/State: Cincinnati, Ohio

Date $\quad$ 7/9/2010	Performed by: JRL		
Warrant	- Eight-Hour Vehicular Volume		

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	4
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	338
1:00-2:00 AM	0	1:00-2:00 PM	338
2:00-3:00 AM	0	2:00-3:00 PM	338
3:00-4:00 AM	0	3:00-4:00 PM	338
4:00-5:00 AM	0	4:00-5:00 PM	680
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	390	7:00-8:00 PM	0
8:00-9:00 AM	338	8:00-9:00 PM	0
9:00-10:00AM	338	9:00-10:00PM	0
10:00-11:00 AM	338	10:00-11:00 PM	0
11:00-12:00 PM	338	11:00-12:00 PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	632
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	632
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	632
$3: 00-4: 00$ AM	0	$3: 00-4: 00 \mathrm{PM}$	632
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	650
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1730	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	632	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	632	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	632	$10: 00-11: 00 \mathrm{PM}$	0
$11: 00-12: 00 \mathrm{PM}$	632	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 5th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
5th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	1790		620	510	2920	1790	1130
8:00-9:00 AM	711		482	271	1464	711	753
9:00-10:00AM	711		482	271	1464	711	753
10:00-11:00 AM	711		482	271	1464	711	753
11:00-12:00 PM	711		482	271	1464	711	753
12:00-1:00 PM	711		482	271	1464	711	753
1:00-2:00 PM	711		482	271	1464	711	753
2:00-3:00 PM	711		482	271	1464	711	753
3:00-4:00 PM	711		482	271	1464	711	753
4:00-5:00 PM	630		890	280	1800	630	1170
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	8108	0	5366	2958	16432	8108	8324

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: 5th Street \& Central Avenue   City/State: Cincinnati, Ohio   Date 7/9/2010   Warrant 1 - Eight-Hour Vehicular Volume			Performed by:	RL
	Number of lanes of moving traffic for moving traffic on each approach:			
	Major Street:	2	Minor Street:	4
	Vehicles per hour on major street (total of both approaches):			
	12:00-1:00 AM	0	12:00-1:00 PM	753
	1:00-2:00 AM	0	1:00-2:00 PM	753
	2:00-3:00 AM	0	2:00-3:00 PM	753
	3:00-4:00 AM	0	3:00-4:00 PM	753
	4:00-5:00 AM	0	4:00-5:00 PM	1170
	5:00-6:00 AM	0	5:00-6:00 PM	0
	6:00-7:00 AM	0	6:00-7:00 PM	0
	7:00-8:00 AM	1130	7:00-8:00 PM	0
	8:00-9:00 AM	753	8:00-9:00 PM	0
	9:00-10:00AM	753	9:00-10:00PM	0
	10:00-11:00 AM	753	10:00-11:00 PM	0
	11:00-12:00 PM	753	11:00-12:00 PM	0
	Vehicles per hour on higher-volume minor street approach (one direction only)			
	12:00-1:00 AM	0	12:00-1:00 PM	711
	1:00-2:00 AM	0	1:00-2:00 PM	711
	2:00-3:00 AM	0	2:00-3:00 PM	711
	3:00-4:00 AM	0	3:00-4:00 PM	711
	4:00-5:00 AM	0	4:00-5:00 PM	630
	5:00-6:00 AM	0	5:00-6:00 PM	0
	6:00-7:00 AM	0	6:00-7:00 PM	0
	7:00-8:00 AM	1790	7:00-8:00 PM	0
	8:00-9:00 AM	711	8:00-9:00 PM	0
	9:00-10:00AM	711	9:00-10:00PM	0
	10:00-11:00 AM	711	10:00-11:00 PM	0
	11:00-12:00 PM	711	11:00-12:00 PM	0

Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
No
Combination of Warrants A and B Criteria Met?
Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 5th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
5th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	Minor (EB/NB)   Approach	Minor (WB/SB)   Approach	Major(EB/NB)   Approach	Major(WB/SB)   Approach	Total	Minor
Total						
Major						

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: 5th Street \& Central Avenue
City/State: Cincinnati, Ohio
$\begin{array}{lll}\text { Date 7/9/2010 } & \text { Performed by: JRL } \\ \text { Warrant 1 } & \text { Eight-Hour Vehicular Volume } & \end{array}$
Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	4
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	415
1:00-2:00 AM	0	1:00-2:00 PM	415
2:00-3:00 AM	0	2:00-3:00 PM	415
3:00-4:00 AM	0	3:00-4:00 PM	415
4:00-5:00 AM	0	4:00-5:00 PM	780
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	490	7:00-8:00 PM	0
8:00-9:00 AM	415	8:00-9:00 PM	0
9:00-10:00AM	415	9:00-10:00PM	0
10:00-11:00 AM	415	10:00-11:00 PM	0
11:00-12:00 PM	415	11:00-12:00 PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	612
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	612
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	612
$3: 00-4: 00 \mathrm{AM}$	0	$3: 00-4: 00 \mathrm{PM}$	612
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	540
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	1520	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	612	$8: 00-9: 00 \mathrm{PM}$	0
9:00-10:00AM	612	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	612	$10: 00-11: 00 \mathrm{PM}$	0
$11: 00-12: 00 \mathrm{PM}$	612	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 5th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

## Is Peak Hour Volume Warrant Met? <br> Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
4th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

$\left.$|  | Minor (EB/NB) <br> Approach | Minor (WB/SB) <br> Approach | Major(EB/NB) <br> Approach | Major(WB/SB) <br> Approach | Total | Minor |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | Total |
| :---: |
| Major | \right\rvert\,

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection CANNOT use the $70 \%$ option for this warrant, do you
want to use it?

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 4th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
4th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	$\begin{array}{\|c} \hline \begin{array}{c} \text { Minor (EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{array}{c\|} \hline \begin{array}{c} \text { Major(WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		560	310	220	1090	560	530
8:00-9:00 AM		762	525	188	1475	762	713
9:00-10:00AM		762	525	188	1475	762	713
10:00-11:00 AM		762	525	188	1475	762	713
11:00-12:00 PM		762	525	188	1475	762	713
12:00-1:00 PM		762	525	188	1475	762	713
1:00-2:00 PM		762	525	188	1475	762	713
2:00-3:00 PM		762	525	188	1475	762	713
3:00-4:00 PM		762	525	188	1475	762	713
4:00-5:00 PM		1660	1310	280	3250	1660	1590
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	8316	5820	2004	16140	8316	7824

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met? ..... Yes
B. Is the Interruption of Continuous Traffic Met? ..... No
Combination of Warrants A and B Criteria Met? ..... No(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 4th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
4th Street \& Central Avenue

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

$\left.$|  | Minor (EB/NB) <br> Approach | Minor (WB/SB) <br> Approach | Major(EB/NB) <br> Approach | Major(WB/SB) <br> Approach | Total | Minor |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | Total |
| :---: |
| Major | \right\rvert\,

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 4th Street \& Central Avenue
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
3rd Street \& Clay Wade Bailey Bridge

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	500		230	180	910	500	410
8:00-9:00 AM	268		264	321	853	268	585
9:00-10:00AM	268		264	321	853	268	585
10:00-11:00 AM	268		264	321	853	268	585
11:00-12:00 PM	268		264	321	853	268	585
12:00-1:00 PM	268		264	321	853	268	585
1:00-2:00 PM	268		264	321	853	268	585
2:00-3:00 PM	268		264	321	853	268	585
3:00-4:00 PM	268		264	321	853	268	585
4:00-5:00 PM	300		550	790	1640	300	1340
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	2944	0	2892	3538	9374	2944	6430

Does the 85 th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?

Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> No

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 3rd Street \& Clay Wade Bailey Bridge
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
3rd Street \& Clay Wade Bailey Bridge

Date:

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	600		230	200	1030	600	430
8:00-9:00 AM	459		262	564	1285	459	826
9:00-10:00AM	459		262	564	1285	459	826
10:00-11:00 AM	459		262	564	1285	459	826
11:00-12:00 PM	459		262	564	1285	459	826
12:00-1:00 PM	459		262	564	1285	459	826
1:00-2:00 PM	459		262	564	1285	459	826
2:00-3:00 PM	459		262	564	1285	459	826
3:00-4:00 PM	459		262	564	1285	459	826
4:00-5:00 PM	400		600	980	1980	400	1580
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	4672	0	2926	5692	13290	4672	8618

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
No
Combination of Warrants A and B Criteria Met?
Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 3rd Street \& Clay Wade Bailey Bridge
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
3rd Street \& Clay Wade Bailey Bridge

Date:

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \\ \hline \end{gathered}$	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	680	200	260	320	1460	680	580
8:00-9:00 AM	538	52	284	618	1492	538	902
9:00-10:00AM	538	52	284	618	1492	538	902
10:00-11:00 AM	538	52	284	618	1492	538	902
11:00-12:00 PM	538	52	284	618	1492	538	902
12:00-1:00 PM	538	52	284	618	1492	538	902
1:00-2:00 PM	538	52	284	618	1492	538	902
2:00-3:00 PM	538	52	284	618	1492	538	902
3:00-4:00 PM	538	52	284	618	1492	538	902
4:00-5:00 PM	400	260	550	900	2110	400	1450
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	5384	876	3082	6164	15506	5384	9246

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> Yes

B. Is the Interruption of Continuous Traffic Met?

Yes
Combination of Warrants A and B Criteria Met?
Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: 3rd Street \& Clay Wade Bailey Bridge
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
McMillian Street \& Central Parkway
Cincinnati, Ohio
Date:

	Minor (EB/NB)   Approach	Minor (WB/SB)   Approach	$\begin{gathered} \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	300	630	1530	210	2670	630	1740
8:00-9:00 AM	539	395	601	328	1863	539	929
9:00-10:00AM	539	395	601	328	1863	539	929
10:00-11:00 AM	539	395	601	328	1863	539	929
11:00-12:00 PM	539	395	601	328	1863	539	929
12:00-1:00 PM	539	395	601	328	1863	539	929
1:00-2:00 PM	539	395	601	328	1863	539	929
2:00-3:00 PM	539	395	601	328	1863	539	929
3:00-4:00 PM	539	395	601	328	1863	539	929
4:00-5:00 PM	1340	710	610	620	3280	1340	1230
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	5952	4500	6948	3454	20854	6282	10402

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$


# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: McMillian Street \& Central Parkway
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
McMillian Street \& Central Parkway
Cincinnati, Ohio
Date: $\quad \underline{7 / 9 / 2010} \quad$ Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	350		2390	300	3040	350	2690
8:00-9:00 AM	528		988	455	1971	528	1443
9:00-10:00AM	528		988	455	1971	528	1443
10:00-11:00 AM	528		988	455	1971	528	1443
11:00-12:00 PM	528		988	455	1971	528	1443
12:00-1:00 PM	528		988	455	1971	528	1443
1:00-2:00 PM	528		988	455	1971	528	1443
2:00-3:00 PM	528		988	455	1971	528	1443
3:00-4:00 PM	528		988	455	1971	528	1443
4:00-5:00 PM	1290		1130	890	3310	1290	2020
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	5864	0	11424	4830	22118	5864	16254

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$


# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: McMillian Street \& Central Parkway
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
McMillian Street \& Central Parkway
Cincinnati, Ohio
Date: $\qquad$ Performed By: JRL

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \end{gathered}$	Minor (WB/SB) Approach	$\begin{gathered} \text { Major(EB/NB) } \\ \text { Approach } \end{gathered}$	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	400	720	1540	200	2860	720	1740
8:00-9:00 AM	662	458	651	306	2077	662	957
9:00-10:00AM	662	458	651	306	2077	662	957
10:00-11:00 AM	662	458	651	306	2077	662	957
11:00-12:00 PM	662	458	651	306	2077	662	957
12:00-1:00 PM	662	458	651	306	2077	662	957
1:00-2:00 PM	662	458	651	306	2077	662	957
2:00-3:00 PM	662	458	651	306	2077	662	957
3:00-4:00 PM	662	458	651	306	2077	662	957
4:00-5:00 PM	1600	820	660	610	3690	1600	1270
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	7296	5204	7408	3258	23166	7616	10666

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> Yes

B. Is the Interruption of Continuous Traffic Met?

Yes
Combination of Warrants A and B Criteria Met?
Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: McMillian Street \& Central Parkway
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
McMillian Street \& Central Parkway
Cincinnati, Ohio
Date: $\quad \underline{7 / 9 / 2010} \quad$ Performed By: JRL

$\left.$|  | Minor (EB/NB) <br> Approach | Minor (WB/SB) <br> Approach | Major(EB/NB) <br> Approach | Major(WB/SB) <br> Approach | Total | Minor |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | Total |
| :---: |
| Major | \right\rvert\,

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$


# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: McMillian Street \& Central Parkway
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met? Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Western Hills Viaduct \& I-75 Ramps

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL $\qquad$

	$\begin{gathered} \text { Minor (EB/NB) } \\ \text { Approach } \end{gathered}$	Minor (WB/SB) Approach	Major(EB/NB) Approach	Major(WB/SB) Approach	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	1130	1220	3180	500	6030	1220	3680
8:00-9:00 AM	597	383	1298	941	3219	597	2239
9:00-10:00AM	597	383	1298	941	3219	597	2239
10:00-11:00 AM	597	383	1298	941	3219	597	2239
11:00-12:00 PM	597	383	1298	941	3219	597	2239
12:00-1:00 PM	597	383	1298	941	3219	597	2239
1:00-2:00 PM	597	383	1298	941	3219	597	2239
2:00-3:00 PM	597	383	1298	941	3219	597	2239
3:00-4:00 PM	597	383	1298	941	3219	597	2239
4:00-5:00 PM	1140	520	1150	2090	4900	1140	3240
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	7046	4804	14714	10118	36682	7136	24832

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street? $\qquad$
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff



Is the intersection using the reduced volume criteria based on speed or population? No
A. Is the Minimum Vehicular Volume Warrant Met?
Yes
B. Is the Interruption of Continuous Traffic Met?
Yes
Combination of Warrants A and B Criteria Met?
Yes
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Western Hills Viaduct \& I-75 Ramps
City/State: Cincinnati, Ohio
Warrant 3B - Peak Hour
The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
Western Hills Viaduct UPPER DECK \& I-75 SB Off-Ramp
City/State:
Cincinnati, Ohio
Date: $\quad \underline{7 / 9 / 2010} \quad$ Performed By: JRL

	Minor (EB/NB) Approach	Minor (WB/SB) Approach	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Major(WB/SB) } \\ \text { Approach } \\ \hline \end{gathered}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM		260	1560	320	2140	260	1880
8:00-9:00 AM		354	666	273	1293	354	939
9:00-10:00AM		354	666	273	1293	354	939
10:00-11:00 AM		354	666	273	1293	354	939
11:00-12:00 PM		354	666	273	1293	354	939
12:00-1:00 PM		354	666	273	1293	354	939
1:00-2:00 PM		354	666	273	1293	354	939
2:00-3:00 PM		354	666	273	1293	354	939
3:00-4:00 PM		354	666	273	1293	354	939
4:00-5:00 PM		500	770	530	1800	500	1300
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	0	3592	7658	3034	14284	3592	10692

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$


# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Western Hills Viaduct UPPER DECK \& I-75 SB Off-Ramp
City/State: Cincinnati, Ohio

## Warrant 3B - Peak Hour

The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection:
City/State:
Western Hills Viaduct UPPER DECK \& I-75 NB Off-Ramp

Date:
Cincinnati, Ohio
7/9/2010 Performed By: JRL

	$\begin{gathered} \begin{array}{c} \text { Minor (EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{gathered}$	Minor (WB/SB) Approach	$\begin{array}{c\|} \hline \begin{array}{c} \text { Major(EB/NB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Major(WB/SB) } \\ \text { Approach } \end{array} \\ \hline \end{array}$	Total	Minor	Total Major
12:00-1:00 AM					0	0	0
1:00-2:00 AM					0	0	0
2:00-3:00 AM					0	0	0
3:00-4:00 AM					0	0	0
4:00-5:00 AM					0	0	0
5:00-6:00 AM					0	0	0
6:00-7:00 AM					0	0	0
7:00-8:00 AM	760		570		1330	760	570
8:00-9:00 AM	379		617		996	379	617
9:00-10:00AM	379		617		996	379	617
10:00-11:00 AM	379		617		996	379	617
11:00-12:00 PM	379		617		996	379	617
12:00-1:00 PM	379		617		996	379	617
1:00-2:00 PM	379		617		996	379	617
2:00-3:00 PM	379		617		996	379	617
3:00-4:00 PM	379		617		996	379	617
4:00-5:00 PM	370		1070		1440	370	1070
5:00-6:00 PM					0	0	0
6:00-7:00 PM					0	0	0
7:00-8:00 PM					0	0	0
8:00-9:00 PM					0	0	0
9:00-10:00PM					0	0	0
10:00-11:00 PM					0	0	0
11:00-12:00 PM					0	0	0
Total	4162	0	6576	0	10738	4162	6576

Does the 85th Percentile Speed/Posted Speed Limit exceed 40 mph on the major street?
Does the intersection lie within a built-up area of an isolated community having a population of less than 10,000? $\qquad$
Your intersection want to use it?

CANNOT use the $70 \%$ option for this warrant, do you
$\qquad$

## Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff

Intersection: Western Hills Viaduct UPPER DECK \& I-75 NB Off-Ramp
City/State: Cincinnati, Ohio
Date 7/9/2010 Performed by: JRL
Warrant 1 - Eight-Hour Vehicular Volume

Number of lanes of moving traffic for moving traffic on each approach:

Major Street:	2	Minor Street:	2
Vehicles per hour on major street (total of both approaches):			
12:00-1:00 AM	0	12:00-1:00 PM	617
1:00-2:00 AM	0	1:00-2:00 PM	617
2:00-3:00 AM	0	2:00-3:00 PM	617
3:00-4:00 AM	0	3:00-4:00 PM	617
4:00-5:00 AM	0	4:00-5:00 PM	1070
5:00-6:00 AM	0	5:00-6:00 PM	0
6:00-7:00 AM	0	6:00-7:00 PM	0
7:00-8:00 AM	570	7:00-8:00 PM	0
8:00-9:00 AM	617	8:00-9:00 PM	0
9:00-10:00AM	617	9:00-10:00PM	0
10:00-11:00 AM	617	10:00-11:00 PM	0
11:00-12:00 PM	617	11:00-12:00 PM	0

Vehicles per hour on higher-volume minor street approach (one direction only):

12:00-1:00 AM	0	$12: 00-1: 00 \mathrm{PM}$	379
1:00-2:00 AM	0	$1: 00-2: 00 \mathrm{PM}$	379
2:00-3:00 AM	0	$2: 00-3: 00 \mathrm{PM}$	379
3:00-4:00 AM	0	$3: 00-4: 00 \mathrm{PM}$	379
4:00-5:00 AM	0	$4: 00-5: 00 \mathrm{PM}$	370
5:00-6:00 AM	0	$5: 00-6: 00 \mathrm{PM}$	0
6:00-7:00 AM	0	$6: 00-7: 00 \mathrm{PM}$	0
7:00-8:00 AM	760	$7: 00-8: 00 \mathrm{PM}$	0
8:00-9:00 AM	379	$8: 00-9: 00$ PM	0
9:00-10:00AM	379	$9: 00-10: 00 \mathrm{PM}$	0
10:00-11:00 AM	379	$10: 00-11: 00 \mathrm{PM}$	0
$11: 00-12: 00 \mathrm{PM}$	379	$11: 00-12: 00 \mathrm{PM}$	0

Is the intersection using the reduced volume criteria based on speed or population? No

## A. Is the Minimum Vehicular Volume Warrant Met? <br> Yes

B. Is the Interruption of Continuous Traffic Met? No

Combination of Warrants A and B Criteria Met? No
(Use only when Conditions A and B are both not satisified)

# Manual of Uniform Traffic Control Devices Worksheet for Signal Warrants (Section 4C) Prepared by Parsons Brinckerhoff 

Intersection: Western Hills Viaduct UPPER DECK \& I-75 NB Off-Ramp
City/State: Cincinnati, Ohio

## Warrant 3B - Peak Hour

The peak hour volume warrant is also intended for application when traffic conditions are such that for one hour of the day minor street traffic suffers undue traffic delay in entering or crossing the main street.

The peak hour volume warrant is satisfied when the plotted point representing vehicles per hour on the higher volume minor street for one hour falls above the curve in Figure 4C-3.

Figure 4C-4 may be used if the 85th percentile speed of the major street exceeds 40 mph or when the intersection lies within a built-up area of an isolated community having a population less than 10,000.

## Peak Hour volume warrant - Major and Minor Streets for Urban Locations - Warrant 3B



Major Street Vehicles per Hour

Is Peak Hour Volume Warrant Met?
Yes

# Appendix H Maintenance of Traffic Phasing Plan 

## Maintenance of Traffic Analysis

Once work begins in mainline l-75, it will be critical to manage the maintenance of traffic (MOT) operations between other projects taking place along I-75 and between the Commonwealth of Kentucky and the State of Ohio. The MOT plan developed for the I-75 corridor reconstruction requires coordination among projects and between the two states along the entire eight-mile corridor length. Within Kentucky, the project involves the reconstruction of I-71/I-75 from south of the Dixie Highway interchange to the Ohio River bridges. Construction within Kentucky also includes the construction of collector distributor (C-D) roadway between the Dixie Highway and Kyles Lane interchanges and a C-D roadway between KY $12^{\text {th }}$ Street and the Ohio River along with local roadway improvements. Within Ohio, the project involves the reconstruction of I-71 from the Ohio River bridges to the western end of the Fort Washington Way (FWW), the reconstruction of I-75 from the Ohio River bridges to north of the Western Hills Viaduct (WHV). Construction within Ohio also includes the construction of a C-D roadway from the Ohio River bridges to the Ezzard Charles Drive overpass, reconstruction of the I-75/US 50 interchange, along with local roadway improvements.

## General Overview and Delivery Options

The general MOT plan involves constructing the western portion of the I-75 corridor first, including the new bridge over the Ohio River. As the construction of the new bridge may exceed three years, it is on the project's critical path for maintaining significant MOT operations. The work on the western portion of the corridor also includes replacing and lengthening the overpasses if they are not constructed in an earlier contract package. Once the western portion is constructed, southbound I-75 traffic will be diverted to the widened area, crossing the new bridge on the bottom deck (future southbound C-D roadway), and utilizing the widened portion of the interstate in Kentucky. Northbound I-75 traffic will remain in its current location, leaving a large work area available to the contractor to construct new I-75 pavement and local access ramps in Ohio. The final MOT phase involves shifting northbound I-75 to the future southbound I-75 location on the upper deck of new Ohio River Bridge, allowing the construction of northbound interstate and C-D roadways between KY $12^{\text {th }}$ Street and the connections to FWW and $\mathrm{OH} 2^{\text {nd }}$ Street, in addition to the rehabilitation of the existing Brent Spence Bridge.

## I-75 Corridor Context

The Brent Spence Bridge is part of the larger I-75 Improvement Program which extends from south of Dixie Highway in Kentucky to I-275 in Ohio. This program is subdivided into three major projects; the Mill Creek Expressway project, the Thru the Valley project, and the Brent Spence Bridge Replacement/Rehabilitation project. These Kentucky and Ohio projects are being developed under the Ohio Department of Transportation's (ODOT's) Major Project Development Process (PDP) and will utilize phased construction. The Mill Creek Expressway project will be constructed first, the Thru the Valley project will be constructed second, and the Ohio portion of the Brent Spence Bridge will be third. The construction sequencing for each of these projects will need to be coordinated. Maintenance of traffic, lane continuity, and geometric design will dictate construction termini that are different from the termini used for the planning and preliminary design efforts. Kentucky may begin its portion of the Brent Spence Bridge corridor at a different time due to budget constraints in Kentucky's Six-Year Transportation Plan. It is critical that phasing and connections of the main span with the Kentucky and Ohio approaches be coordinated between the two states. The delivery method
should have a strong foundation in community awareness, maintenance of traffic, constructability, and safety.

Creative phasing will allow for less complicated maintenance of traffic plans, while improving the interim performance and operational nature of the I-71/I-75 corridor. Building the entire Brent Spence Bridge Replacement/Rehabilitation project in one phase would shorten the amount of time the public is affected; however, available funds may not permit this approach. Further refinements in the staging of the work will develop details of the phasing and funding plans, as well as coordination with the larger I-75 corridor. The integration and coordination of all I-75 construction projects is recommended.

## Regional Projects

The construction of the Brent Spence Bridge Replacement/Rehabilitation project will have implications on the Greater Cincinnati Region beyond the I-75 Improvement Program. The Greater Cincinnati Region interstate system (Figure 1) includes I-71, I-74, I-75, I-275, and I-471. I-71 and I-75 share the same alignment within Kentucky and split in the Cincinnati Central Business District (CBD) in Ohio running north/south. I-74 from Indiana connects to I-75 just north of the Brent Spence Bridge project limits. I-471 connects I-71 to I-275 running just east of the Cincinnati CBD across the Ohio River along the east side of the City of Newport in Kentucky. I-275 is the longest looped expressway in the United States at 84 miles traveling through three adjacent states.


Figure 1: Greater Cincinnati Regional Map

During construction of the Brent Spence Bridge Replacement/Rehabilitation project, I-275 and I471 will be utilized as the primary MOT detour routes for interstate traffic.

There are several local projects either scheduled for construction or under consideration for construction, which can provide additional MOT relief. Many of these projects are located in Kentucky and will provide alternative travel routes for local commuters. It is anticipated that these alternative routes will then provide more space on the interstate systems for regional and national through traffic.

## Kentucky Six Year Plan Projects

The Commonwealth of Kentucky has several projects that if constructed, would help with MOT operations during the construction of the Brent Spence Bridge Replacement/Rehabilitation project. These involve routes I-471 in Campbell County; KY 8 in Newport; KY 9 in Newport; and KY $4^{\text {th }}$ Street in Covington. These routes could be used as important congestion relief routes during construction.

## I-471 \& KY 8 Project

The Kentucky Transportation Cabinet (KYTC) has two projects on I-471 between the Ohio River and I-275, which include adding an additional travel lane between the Ohio River and Memorial Parkway, and widening the ramp from southbound I-471 to westbound I-275. The first is a pavement rehabilitation project in which the pavement will be removed and replaced full width in both the northbound and southbound directions. The second project is a reconstruction/realignment of the southbound l-471 exit ramp to KY 8 which includes an additional lane to Memorial Parkway. Currently, the pavement rehabilitation project is scheduled to begin before the KY 8 exit ramp project. It is recommended that KYTC widen I471 in both the north and south directions as part of their pavement rehabilitation project. This widening recommendation is included in the southbound l-471 exit ramp to KY 8 project's initial Phase 1 design. As part of the l-471 pavement rehabilitation project, the ramp from southbound $\mathrm{I}-471$ to westbound I-275 should be widened from one lane to two. This widening of I-471 and the ramp to I-275 will facilitate the diversion of I-71 traffic to I-471, lessening the traffic volumes in the Brent Spence Bridge project corridor.

KYTC's southbound I-471 exit ramp to KY 8 project was developed to reduce the congestion on southbound I-471, as traffic backs up across the Ohio River Bridge into Ohio because of the inadequate exit ramp to KY 8. This project will enhance capacity when I-71 is diverted to I-471 during the construction of the Brent Spence Bridge Corridor.

## KY 9 Reconstruction Project

KYTC is designing the realignment/reconstruction of KY 9 from south of $11^{\text {th }}$ Street to the Taylor-Southgate Bridge, including the connection to KY 8 (Veteran's Bridge) into Covington. This project provides a direct route between I-275 and Cincinnati without having to navigate through the City of Newport's city street grid. This route will have limited connections and traffic signals, enabling a lower travel time between I-275 and Cincinnati. It will also facilitate the movement of motorists to and from I-275 who desire to access Covington, helping to reduce the traffic volumes in the Brent Spence Bridge construction corridor. By constructing this route, KYTC will provide an efficient north-south alternate that can be used as an alternative route
during construction of the Brent Spence Bridge Corridor. In addition, it can be used to relieve traffic from the l-471 \& KY 8 Project during its construction.

## Fourth Street in Covington

KYTC has a Congestion Mitigation and Air Quality (CMAQ) project along KY $4^{\text {th }}$ Street in Covington at the intersection with Philadelphia Street and the connections to I-75. The purpose of this project is to widen the connection of KY $4^{\text {th }}$ Street to the l-75 ramps, allowing an enhanced capacity in order to reduce the congestion on KY $4^{\text {th }}$ Street. In the PM peak hour, KY $4^{\text {th }}$ Street traffic is congested from east of the Clay Wade Bailey Bridge to I-75. This is primarily due to the bottleneck where the three lanes of KY $4^{\text {th }}$ Street are reduced to two lanes at the connection to the I-75 ramps. The project will eliminate this bottleneck by extending the third lane, and removing the forced left turn lane from KY $4^{\text {th }}$ Street to Philadelphia Street. This will allow the fourth lane to provide additional capacity and also eliminate the forced weaving that currently exists at the KY $4^{\text {th }}$ Street and Philadelphia Street intersection.

This project will increase the capacity of KY $4^{\text {th }}$ Street and improve an important Ohio River crossing option that will be needed for the Brent Spence Bridge Corridor project's maintenance of traffic. An improved KY $4^{\text {th }}$ Street will provide another option rather than the Brent Spence Bridge for motorists wishing to access west Covington and the cities of Park Hills, Ludlow, Bromley, and Villa Hills.

## Potential Projects

Within the Commonwealth of Kentucky, there are three potential projects, which if constructed would add significant benefit during the Brent Spence Bridge Corridor construction and provide long term benefit to the local communities. These projects include the reconstruction of the Main Street/KY $4^{\text {th }}$ Street intersection at the south end of the Clay Wade Bailey Bridge, Main Street Widening in Covington, and the Veterans Memorial Bridge over the Licking River. Each of these projects would provide improved access routes that could provide congestion relief routes during construction.

## Main Street/Fourth Street intersection at the Clay Wade Bailey Bridge

Currently, the south end of the Clay Wade Bailey Bridge in Covington does not align well with Main Street. There is a center lane on the bridge that aligns with the northbound left turn lane on Main Street, rendering this center lane practically useless. The southbound Clay Wade Bailey predominate movement is a right turn onto westbound KY $4^{\text {th }}$ Street. In the PM peak hour, traffic backs up across the bridge into Ohio because the right turn traffic blocks the through lane.

In conjunction with KYTC's current CMAQ project on KY $4^{\text {th }}$ Street described above, it is recommended that KYTC consider reconfiguring this intersection to provide dual right turn lanes from the bridge onto KY $4^{\text {th }}$ Street, at least temporarily during the Brent Spence Bridge Corridor projects' duration. This would help reduce travel time and congestion, making the Clay Wade Bailey Bridge a more convenient alternate route for those traveling south into Covington and Newport, as well as cities beyond.

## Main Street Widening in Covington

In an effort to increase capacity and improve the utilization of the Clay Wade Bailey Bridge, the Central Area Loop Study for Covington discussed modifying Main Street between KY $5^{\text {th }}$ Street

Date: 5-6-11
and $K Y 4^{\text {th }}$ Street. It is recommended that the northwest radius at KY $5^{\text {th }}$ Street and Main Street be modified to accommodate dual left turns from KY $5{ }^{\text {th }}$ Street onto Main Street northbound. It is also recommended that the eastern column on the railroad bridge bent south of KY $4^{\text {th }}$ Street be relocated to allow two through lanes onto the Clay Wade Bailey Bridge into Cincinnati.

Upgrading this section of Main Street would increase the capacity of northbound Main Street by allowing two through lanes onto the Clay Wade Bailey Bridge. This would allow the bridge to provide an efficient alternate route during MOT operations the construction of the Brent Spence Bridge Corridor.

## Veterans Memorial Bridge over the Licking River

Both the City of Newport and the City of Covington have requested that KYTC replace the Veterans Memorial Bridge. This three lane bridge is aligned with KY $4^{\text {th }}$ Street in Covington, which is one way west except for the block between Garrard Street and the bridge. Eastbound KY $5^{\text {th }}$ Street traffic has to make turns at both the Garrard Street intersections and at KY $4^{\text {th }}$ Street to access the bridge. This imposes unnecessary delays and congestion on the local road network. In Newport, a yoke is used to direct traffic to the one-way street grid. The use of a yoke in Covington would be problematic due to the historic properties located within the area that would be impacted by construction of a yoke.

Both cities would like the bridge replaced in a manner that would provide seamless connections to their one-way street grids. The major problem involves a historic property at the intersection of KY $5^{\text {th }}$ and Garrard streets, preventing a direct route to Newport.

During construction, alternate routes include the Ohio River bridges into Newport and Covington, as well as a reconstructed KY 9 connecting I-275 and Cincinnati. Improving the Veterans Memorial Bridge connection will reduce travel time and congestion between these cities, making them a more attractive alternate route for $\mathrm{I}-275$ motorists, as well as those traveling between the west and east sides of the region.

## Construction Staging Areas

Due to the size and scope of the Brent Spence Bridge Replacement/Rehabilitation project, it will be necessary to establish construction staging areas for the contractors' materials and equipment. Failure to accommodate staging areas will result in increased project costs due to the delays for the contractor in hauling equipment and materials from an off-site location. It is recommended that the staging areas be established in both Ohio and Kentucky to the extent possible. Potential staging areas have been identified in both Kentucky and Ohio.

In Kentucky, there are two convenient and inexpensive staging areas (Figure 2). The first is located at the southeast quadrant of KY $3^{\text {rd }}$ Street and Crescent Avenue (K-1). The properties which contain existing buildings will need to be


Figure 2: Kentucky Staging Areas acquired and demolished as part of the project. Since these properties will be acquired, they can be used as a
construction staging area. The new Ohio River bridge/approach structures will be constructed overhead, leaving the at-grade area available for staging. This area is easily accessible from both I-75 and the city street grid of Covington. A second staging area is located at the southeast quadrant of $K Y 5^{\text {th }}$ Street and $I-71 / I-75$, west of the $K Y 5^{\text {th }}$ Street exit ramp (K-2). It is approximately 2.5 acres in size. This area is within the existing right of way and is available to be used until the final phase of construction. The KY $5^{\text {th }}$ Street ramp will be removed and relocated during the final construction phase. The KY $5^{\text {th }}$ Street ramp could be relocated in an earlier phase thus allowing this staging area to remain in use during the entire project.

In Ohio, locating staging areas is more complicated due to the development adjacent to the I-75 corridor. Four possible staging areas were identified, one on the east side of the I-75 corridor and the three on the west side. The most convenient site for a construction staging area is along the river adjacent to the existing Brent Spence Bridge ( $\mathrm{O}-1$ ). Area $\mathrm{O}-1$ is east of the existing bridge and contains the material yard for an existing, viable concrete plant. Even thought this location is convenient, it is not considered an advantageous option due to


Figure 3: Ohio Staging Areas the potential of contractors utilizing the concrete plant during construction. West of the bridge has an existing and proposed Duke Energy substation, historic Longworth Hall property, and a coal yard. The best options for a staging area are on the west side of I-75.

They include:

1) A parking lot between Mehring Way and Pete Rose Way (O-2). This property is owned by Duke Energy.
2) The northern portion of the Longworth Hall parking lot that lies outside the historic district (O-3).
3) A vacant lot in the southwest quadrant of Linn Street and Gest Street (O-4).

Portions of sites $\mathrm{O}-2$ and $\mathrm{O}-3$ will be acquired for the Brent Spence Bridge Replacement/Rehabilitation project. The remaining areas of $\mathrm{O}-2$ and $\mathrm{O}-3$ along with $\mathrm{O}-4$ will not be acquired. These parcels would need to be acquired separately as a temporary easement. This would increase the project costs but is necessary to avoid higher construction costs that would result if the contractor has to haul in equipment and materials from a more remote location. Each of the three sites has excellent access from the City of Cincinnati street grid, as well as from Kentucky utilizing the Clay Wade Bailey Bridge and $\mathrm{OH} 3^{\text {rd }}$ Street in Cincinnati. Areas O-3 and O-4 also have rail access.

## Brent Spence Bridge Construction/MOT Phasing Plan

For the purpose of this maintenance of traffic analysis, the project was divided into four primary construction phases. Each phase is interdependent across both the Commonwealth of Kentucky and the State of Ohio. This assumes that both states will commence construction in
reasonably the same time period. The construction between Kentucky $12^{\text {th }}$ Street and Ohio $9^{\text {th }}$ Street must be interdependent as the construction of the New Ohio River Bridge and approach structures are dependent on each other for MOT. The construction south of Kentucky $12^{\text {th }}$ street and north of Ohio $9^{\text {th }}$ Street can be done independent of the middle section; however, lane continuity will be a critical concern if they are constructed independent of the rest of the project.

## Construction Phase Durations

The timeframe to construct each phase of the project will be influenced by many factors. These factors include, but are not limited to the following:

1) Maintenance of Traffic requirements
2) Weather, including Ohio River elevation
3) Available labor, equipment, and material resources
4) Work area constraints, including access and storage areas
5) Volume of traffic
6) Political directives, including allowable work hours
7) Number of construction contracts, including design-build
8) Pavement type

For the purpose of this maintenance of traffic analysis, standard practice construction methods and durations for the above mentioned factors were utilized, unless noted otherwise.

## Maintenance of Traffic Phasing

The Brent Spence Bridge Replacement/Rehabilitation project MOT phasing is divided into four primary construction phases with Phase 2 containing a sub phase. Ramp status by each phase is included in Attachment $A$.

## Phases 1 and 2

Phases 1 and 2 are combined due to the extensive time it will require to construct the new bridge over the Ohio River. The new bridge, depending upon the type selected, will require 2.53.5 years to construct. This estimate is based upon past experiences with similar long structures over major rivers.

The remaining work identified in phases 1 and 2 includes construction of roadway and structures primarily on the west side of the I-75 corridor, though some construction can commence on the east side if the contractor desires. During these phases, the primary construction focus is on the structures/roadway widening along southbound I-75 in Covington and Cincinnati. It also includes the significant widening along southbound I-75 in Kentucky between Kyles Lane and KY $12^{\text {th }}$ Street (known locally as the "Cut-in-the-Hill").

During Phase 1, the southbound I-71/I-75 exit ramp to KY $5^{\text {th }}$ Street will be closed along with the KY $4^{\text {th }}$ Street ramp to $I-71 / I-75$. Access to the KY $5^{\text {th }}$ Street ramp will be restored during Phase $2 B$. The connection from $K Y 4^{\text {th }}$ Street to southbound I-71/I-75 will be restored during Phase 2 by utilizing the new local frontage road connected to the entrance ramp at KY $12^{\text {th }}$ Street.

During Phase 1, the I-71 and US 50 traffic links with I-75 will remain in place. During Phase 2, the I-71 traffic links will remain in place with I-75; however, the US 50 links with I-71 and I-75 will be closed. To maintain the US 50 links with I-71 and I-75 as long as possible, a MOT sub phase (Phase 2B) has been incorporated into Phase 2. Phase 2B involves the removal of the west bridge abutments of the overpass structures for $\mathrm{OH} 5^{\text {th }}$ Street and $\mathrm{OH} 6{ }^{\text {th }}$ Street located along the west side of the I-75 corridor that are in the way of completing roadway pavement required for Phase 3 MOT operations. A temporary crossover in Ohio will be constructed during Phase 2B to replace the Kentucky Pike Street exit from I-75 southbound. The temporary crossover will provide access from I-75 southbound to the new KY $5^{\text {th }}$ Street and KY $9^{\text {th }} /$ Pike Streets exit ramps.

During Phase 1 and 2, the I-75 southbound ramp to $\mathrm{OH} 5^{\text {th }}$ Street will remain open during the closure of the $\mathrm{I}-75$ southbound ramp to $\mathrm{OH} 7^{\text {th }}$ Street. During all phases, either the southbound $\mathrm{OH} 5^{\text {th }}$ Street ramp or the $\mathrm{OH} 7^{\text {th }}$ Street ramp will be maintained.

The reconstruction of the Linn Street and Ezzard Charles Drive overpasses needed to be coordinated with the reconstruction of the Freeman Avenue Interchange. During Phase 1, both the Linn Street and Ezzard Charles Drive overpasses will be constructed while maintaining traffic at the Freeman Avenue interchange. Upon completion of these two overpasses, Linn Street and Ezzard Charles Drive will be the detour route during the closure of the Freeman Avenue interchange. During Phase 1 , the $\mathrm{OH} 7^{\text {th }}$ Street and $\mathrm{OH} 9^{\text {th }}$ Street viaducts reconstruction should follow the Linn Street overpass reconstruction to maintain a detour route across l-75.

The Western Hills Viaduct Interchange construction cannot begin until the Hopple Street Interchange is complete. The Hopple Street Interchange is the next adjacent interchange to the north which will be reconstructed as part of the Mill Creek Expressway Project.

Phases 1 and 2 combined will require approximately 3.5 years. During Phase 1, there is approximately 804,000 square feet (s.f.) of structures and $2,781,000$ s.f. of roadway to be constructed. During Phase 2 (including Phase 2B), there is approximately 202,000 s.f. of structures and $3,732,000$ s.f. of roadway to be constructed. The structure quantities for Phases 1 and 2 do not include the new Ohio River Bridge quantities. The critical path item during Phase 1 and 2 is the construction of the new bridge over the Ohio River. The remaining structures and roadway construction can be accomplished with significant float during the 3.5 years to minimize disruptions to traffic.

## Phase 3

In Phase 3, the southbound I-75 traffic will be diverted to the new widening on the west side of the I-75 corridor and the lower deck of the new bridge over the Ohio River. In addition, the new structures north of US $50 / \mathrm{OH} 6^{\text {th }}$ Street will have been completed and will be open to traffic, including the critical connection at $\mathrm{OH} 7^{\text {th }}$ Street. This allows the US $50 / \mathrm{OH} 6^{\text {th }}$ Street viaduct to be closed, as well as the closure of southbound access to Fort Washington Way. The southbound I-71 movement from FWW/OH $3^{\text {rd }}$ Street to southbound I-75 will be closed. Southbound I-71 traffic will be detoured to southbound I-471. The northbound I-71 connection to FWW/OH $2^{\text {nd }}$ Street will remain open. This maintenance of traffic plan opens a large work area between the relocated southbound I-75 and the existing northbound I-75 in both Ohio and Kentucky.

In Phase 3, the I-75 southbound ramps to KY $5^{\text {th }}$, $\mathrm{KY} 9^{\text {th }}$, and Pike streets will be open. The northbound access from I-71/I-75 to Covington will be maintainened.

A significant amount of structures work will be completed in Phase 3. This includes the following structures:

1) Center portion of I-75 over Orchard Drive
2) Center portion of I-75 over Rivard Drive
3) SB portion of I-75 between KY $12^{\text {th }}$ Street and Pike Street
4) SB portion of I-75 over KY $9^{\text {th }}$ Street
5) Remainder of approaches to the new Ohio River bridge
6) I-71 to US 50
7) Fort Washington Way to US 50
8) $\mathrm{SB} \mathrm{I}-75$ to $\mathrm{OH} 5^{\text {th }}$ Street
9) US 50 to $\mathrm{OH} 5^{\text {th }}$ Street
10) Northern portion of SB 75 to FWW
11) Northern portion of SB I-75 to OH $2^{\text {nd }}$ Street
12) Northern portion of US 50 to FWW
13) Northern portion of US 50 to $\mathrm{OH} 2^{\text {nd }}$ Street
14) I-75 NB and SB approaches
15) SB I-75 to Clay Wade Bailey Bridge
16) Clay Wade Bailey Bridge to NB I-75
17) FWW to SB I-75
18) Oh $3^{\text {rd }}$ Street to SB I-75
19) US 50 to FWW
20) $\mathrm{OH} 6^{\text {th }}$ Street viaduct

In addition to the structures work, there will be a substantial amount of grade work including the reconstruction of the center of I-75 throughout the corridor in both Kentucky and Ohio. Reconstruction of the Western Hills Viaduct is anticipated to begin in this phase. In total, there are approximately 731,000 s.f. of structures work and $2,964,000$ s.f. of grade work to be completed in Phase 3. Using accelerated construction rates experienced on other projects, Phase 3 will be completed within approximately 2.0 years.

## Phase 4

The final phase of construction occurs with both northbound and southbound I-75 traffic utilizing the new Ohio River Bridge. The remaining work is located on the east side of the I-75 corridor. Phase 4 includes all structures work located east of the existing l-75 centerline, as well as the remaining work at the Western Hills Viaduct. Rehabilitation of the existing Brent Spence Bridge and the construction of the associated bridge approaches will be performed during this phase. The northbound I-71 connection to FWW/OH $2^{\text {nd }}$ Street will be closed and all I-71 traffic will be detoured to l-471.

In Phase 4, Covington access from KY $4^{\text {th }}$ and Pike streets to northbound I-71/I-75 will be closed due to the rehabilitation of the existing Brent Spence Bridge and associated construction. The Clay Wade Bailey Bridge will become the primary access route for motorist to gain access to I-71 and I-75 northbound. Access to I-71 northbound will be via OH $2^{\text {nd }}$ Street. Access to $\mathrm{I}-$

75 northbound will be via a new temporary ramp connection at the intersection of $\mathrm{OH} 3^{\text {rd }}$ Street and Clay Wade Bailey Bridge. The new temporary ramp connection will provide a direct ramp connection to I-75 northbound. During Phase 4, a new temporary ramp connection from I-75 southbound to the $\mathrm{OH} 3^{\text {rd }}$ Street and Clay Wade Bailey Bridge intersection will also utilized to provide access to the Cincinnati riverfront area and to the City of Covington.

There are approximately $1,079,000$ s.f. of structures and $1,321,000$ s.f. of roadway to be constructed in this final phase. Phase 4 will be completed within approximately 2.5 years.

## Summary

The total duration for the I-75 corridor reconstruction is estimated to be eight years, utilizing standard practice construction methods and durations. The actual duration will be influenced by the factors previously listed. Expedited construction techniques can be utilized to minimize the durations for each phase and roadway closures. Once final design is completed, including the size and type of the various structures, a refined construction duration estimate will be determined utilizing a more detailed critical path schedule. It is also recommended that contractor input be obtained to assist in identifying areas where the design can be modified to improve construction efficiencies. A summary of construction durations and quantities are listed in the table below.

## Construction Durations

Phase	Years	Quantities Per Phase	
		Structures (s.f.)	Roadway (s.f.)
Phases 1 and 2	3.5 years	$1,006,000$	$6,513,000$
Phase 3	2.0 years	731,000	$2,964,000$
Phase 4	2.5 years	$1,079,000$	$1,321,000$
Total	$\mathbf{8 . 0}$ years	$\mathbf{2 , 8 1 6 , 0 0 0}$	$\mathbf{1 0 , 7 9 8 , 0 0 0}$














## Appendix I <br> Cost Estimate

Natrax
(0.

## Project Costs - Construction, Right of Way and Utilities (in millions)

		Alternative E								ALTERNATVEI							
	Segment Description	Construction					$\underset{\substack{\text { Right-of-Way with } \\ \text { Inflation }}}{ }$	Utilities with Inflation	$\begin{array}{\|c} \text { Combined } \\ \text { Construction, } \\ \text { Right of Way and } \\ \text { Utilities Total } \end{array}$	Construction					$\underset{\substack{\text { Right-of-Way with } \\ \text { Inflation }}}{ }$	Utilities with Inflation	$\begin{array}{\|c\|} \text { Combined } \\ \text { Construction, } \\ \text { Right of Way and } \\ \text { Utilities Total } \end{array}$
Construction Contract \#		Today's Cost with 25\% Contingency	Mid-Year of Construction	Inflation Rate ${ }^{\text {P }}$	Inflation Costs	Total Const.				Today's Cost with 25\% Contingency	Mid-Year of Construction	Inflation Rate ${ }^{\text {1 }}$	Inflation Costs	Total Const.			
KY-2	Kyles Lane Bridge Replacement	57.2	7/16/18	46.50\%	53.4	\$10.6	50.0	50.0	\$10.6	57.2	7/16/18	46.50\%	53.4	\$10.6	\$0.0	\$0.0	\$10.6
kY-3	Dixie Highway Bridge Replacement	\$7.8	1/15/16	29.70\%	\$2.3	\$10.1	50.0	50.0	\$10.1	\$7.8	1/15/16	29.70\%	\$2.3	\$10.1	50.0	\$0.0	\$10.1
kr-5	1-75 Reconstruction from Mile Point 187.2 to Mile Point 189.5	\$71.5	1/14/20	57.60\%	\$41.2	\$112.7	\$5.5	\$0.0	\$118.2	\$71.5	1/14/20	57.60\%	\$41.2	\$112.7	\$5.5	\$0.0	\$118.2
kY-6	1-75 Reconstruction from Mile Point 189.5 to the South Termini of the $12^{\text {th }}$ Street Interchange	\$33.2	7/16/19	53.80\%	\$17.9	\$51.1	\$4.2	\$0.0	\$55.3	\$33.2	7/16/19	53.80\%	\$17.9	\$51.1	\$4.2	\$0.0	\$55.3
kY-7	-75 Reconstruction from the South Termini of $12^{\text {th }}$ Street Interchange to the New Bridge over the Ohio River	\$273.6	1/14/20	57.60\%	\$157.6	\$431.2	\$15.6	\$0.0	\$446.8	\$242.5	1/14/20	57.60\%	\$139.7	\$382.2	\$10.5	\$0.0	\$392.7
OH-1	${ }^{1-71 / 1 / 471}$ Ramp Modifications	54.6	7/16/14	20.50\%	50.9	\$5.5	50.0	\$0.0	\$5.5	54.6	7/16/14	20.50\%	50.9	\$5.5	50.0	\$0.0	\$5.5
OH-1A	\|-71/-471	\$1.7	5/31/22	76.60\%	\$1.3	\$3.0	50.0	\$0.0	\$3.0	\$1.7	5/31/22	76.60\%	\$1.3	\$3.0	50.0	\$0.0	\$3.0
OH-2	Linn Street Bridge Replacement and Gest Street reconstruction	\$12.3	12/8/15	29.20\%	\$3.6	\$15.9	\$0.1	\$0.8	\$16.8	\$10.8	12/8/15	29.20\%	\$3.1	\$13.9	\$0.02	\$0.8	\$14.7
OH-3	Ezzard Charles Drive Bridge Replacement; Western Avenue Reconstruction; Freeman Avenue Interchange Reconstruction; Winchell Street Reconstruction; and the Court Street Cul-de-sac, 9th St Entrance Ramp Construction	\$23.3	7/16/16	32.90\%	\$7.6	\$30.9	\$0.03	\$0.2	\$31.1	\$23.0	7/16/16	32.90\%	\$7.5	\$30.5	\$0.04	\$0.2	\$30.7
OH-4	$7^{\text {th }} / 8^{\text {th }} / 9^{\text {th }}$ Street Interchange, 6 th St North Reconstruction	\$40.6	7/16/16	32.90\%	\$13.3	\$53.9	\$7.8	\$0.0	\$61.7	\$30.0	7/16/16	32.90\%	\$9.8	\$39.8	\$4.6	\$0.0	\$44.4
ОН-5	Western Hills Viaduct Interchange Reconstruction from Findlay Street to the northern terminus of the corridor	\$160.1	3/2/19	51.30\%	\$82.1	\$242.2	\$4.6	\$0.2	\$247.0	\$84.9	3/2/19	51.30\%	\$43.5	\$128.4	\$1.3	\$0.2	\$129.9
OH-6	1-75 Reconstruction from North of Linn Street to Findlay Street	\$24.8	1/15/20	57.60\%	\$14.3	\$39.1	\$0.0	\$2.2	\$41.3	\$31.5	1/15/20	57.60\%	\$18.1	\$49.6	\$0.0	\$2.2	\$51.8
OH-7	l-75 Reconstruction from the New Bridge over the Ohio River to North of Linn Street	\$411.5	1/14/20	57.60\%	\$237.0	\$648.5	\$13.4	\$89.7	\$751.6	\$373.1	1/14/20	57.60\%	\$214.9	\$588.0	\$13.7	\$89.7	\$691.4
kY-4	New Ohio River Bridge - Alternative 1	5414.8	$6 / 1 / 17$	37.60\%	\$155.9	5570.7	50.0	50.0	5570.7	5414.8	6/1/17	37.60\%	\$155.9	5570.7	50.0	50.0	5570.7
	New Ohio River Bridge - Alternative 3	\$474.2	1/1/18	41.00\%	\$1994.4	\$668.6	50.0	50.0	\$668.6	5474.2	1/1/18	41.00\%	\$194.4	${ }_{5}^{5668.6}$	50.0	50.0	${ }^{5} 5688.6$
	New Ohio River Bridge - Alternative 6	\$458.5	1/1/18	41.00\%	\$187.8	${ }_{5646.3}$	\$0.0	50.0	${ }_{5646.3}$	\$458.5	1/1/18	41.00\%	\$187.8	${ }_{5646.3}$	\$0.0	S0.0	${ }_{5646.3}$
kr-8	Rehabilitation of the Existing Brent Spence Bridge	\$40.6	1/14/21	65.50\%	\$26.5	\$67.1	\$0.0	\$0.0	\$67.1	\$40.6	1/14/21	65.50\%	\$26.5	\$67.1	\$0.0	\$0.0	\$67.1

## Estimate Alt E KY cont 2

Estimated Cost: \$7,209,761.51
Contingency: 46.50\%
Estimated Total: \$10,562,300.61

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal

0001	A-MC-RDWY	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$	
0343	$202 E 23000$	$2,373.00$	SY	$\$ 8.00000$

PAVEMENT REMOVED

Group 0002: Excavation - Rock
0003 A-MC-RDWY $\quad 1,104.00 \mathrm{CY} \quad \$ 30.00000 \quad \$ 33,120.00$

MAJOR COST DRIVERS, ROADWAY
Total for Group 0002: \$33,120.00
Group 0003: Excavation - Soil
0004 A-MC-RDWY 1.00 LS \$0.00000 \$0.00
$\begin{array}{llll}\text { MAJOR COST DRIVERS, ROADWAY } & 9,936.00 \mathrm{CY} & \$ 8.00000 & \$ 79,488.00\end{array}$ EXCAVATION

Total for Group 0003: \$79,488.00
Group 0004: Excavation - Hazardous

0006 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00 LS	$\$ 0.00000$	$\$ 0.00$
		Total for Group 0004: \$0.00	

Group 0005: Fill - Embankment (includes wasting excess excavation)

0007 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY			$\$ 66,240.00$	
0345 203E20000	$11,040.00$	CY	$\$ 6.00000$	

Total for Group 0005: \$66,240.00
Group 0006: Fill - Lime Modified Soil

0010 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00	LS	$\$ 0.00000$
0346 205E10050   LIME STABILIZED EMBANKMENT	0.00	CY	$\$ 7.00000$
0347 205E10300   LIME	0.00	TON	$\$ 5.00000$

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY $0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00$
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: $\$ 0.00$
Group 0008: Concrete Barrier

0012 A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$
0465 622E10060	0.00	FT	$\$ 110.00000$
$7: 28: 10 A M$			
Thursday, December 02, 2010			$\$ 0.00$

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00


Total for Group 0009: \$0.00

Group 0010: Subgrade Treatment - Cement			
0016 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	3,309.00 SY	\$2.50000	\$8,272.50
		Total for Group 0010: \$8,272.50	
Group 0011: Subgrade Treatment - Undercut \& Backfill			
0017 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00 LS	\$0.00000	\$0.00

Total for Group 0011: \$0.00

Group 0012: Other Roadway Costs				
0019 A-OC-RDWY   OTHER COSTS, ROADWAY   Contingency	0.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0020 \text { 201E11000 } \\ & \text { CLEARING AND GRUBBING } \end{aligned}$	0.00	LS	\$856,500.00000	\$0.00
$\begin{aligned} & 0021 \text { 201E21800 } \\ & \text { TREE REMOVED, } 18 " \text { SIZE } \end{aligned}$	0.00	EACH	\$250.00000	\$0.00
$\begin{aligned} & 0022 \text { 201E23000 } \\ & \text { TREE REMOVED, 30" SIZE } \end{aligned}$	0.00	EACH	\$405.00000	\$0.00
$\begin{aligned} & 0023 \text { 201E24800 } \\ & \text { TREE REMOVED, } 48 \text { " SIZE } \end{aligned}$	0.00	EACH	\$772.00000	\$0.00
$\begin{aligned} & 0026 \text { 202E11000 } \\ & \text { STRUCTURE REMOVED } \end{aligned}$	0.00	LS	\$9,310.13000	\$0.00
$\begin{aligned} & 0028 \text { 202E35200 } \\ & \text { PIPE REMOVED, OVER 24" } \end{aligned}$	0.00	FT		\$0.00
$\begin{aligned} & 0029 \text { 202E38000 } \\ & \text { GUARDRAIL REMOVED } \end{aligned}$	0.00	FT		\$0.00
$\begin{aligned} & 0030 \text { 202E42206 } \\ & \text { ANCHOR ASSEMBLY REMOVED } \end{aligned}$	0.00	EACH		\$0.00
$\begin{aligned} & 0031 \text { 202E58000 } \\ & \text { MANHOLE REMOVED } \end{aligned}$	0.00	EACH		\$0.00
$\begin{aligned} & 0032 \quad 202 E 58100 \\ & \text { CATCH BASIN REMOVED } \end{aligned}$	0.00	EACH		\$0.00
$\begin{gathered} 0033 \text { 202E75000 } \\ \text { FENCE REMOVED } \end{gathered}$	0.00	FT		\$0.00
0034 204E45000	0.00	HOUR	\$126.59000	\$0.00

Line \# Item Number

## Description

Supplemental Description
PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000 0.00 FT
$\$ 0.81000$
$\$ 0.00$

SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
$\begin{array}{lll}0.00 & \text { FT } \$ 14.00000 & \$ 0.00\end{array}$
GUARDRAIL, TYPE 5
0038 606E22000
0.00 EACH
$\$ 0.00$
ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010
ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 0.00 EACH
$\$ 0.00$
ANCHOR ASSEMBLY, TYPE T
$0041606 \mathrm{E} 35000 \quad 0.00 \mathrm{EACH} \quad \$ 0.00$ BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 0.00 EACH
$\$ 0.00$ BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EACH
$\$ 0.00$
IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
$\$ 0.00$
AGGREGATE BASE
For Fencing
0424 601E32100 0.00 CY $\quad \$ 0.00$ ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
$\$ 0.00$
GATE, TYPE 47
For Fencing
0426 625E32000
0.00 EACH
$\$ 0.00$ GROUND ROD For Fencing
0466
0.00
$\$ 0.00000$
$\$ 0.00$
Total for Group 0012: \$0.00
Group 0014: Seeding \& Mulching / Sodding

0045	B-MC-ERCO	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, EROSION CONTROL			$\$ 0.00$	
0467	659E10000	$1,328.00$	SY	$\$ 1.00000$
SEEDING AND MULCHING				$\$ 1,328.00$
0531	$660 E 25000$	0.00	SY	$\$ 15.00000$

Group 0015: Rock Channel Protection

0047	B-MC-ERCO	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, EROSION CONTROL			$\$ 0.00$	
0469	$601 E 32000$	24.00	CY	$\$ 75.00000$

Total for Group 0015: \$1,800.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO 1.00 LS $\$ 0.00000$ \$0.00

## Description Supplemental Description

MAJOR COST DRIVERS, EROSION CONTROL

$0470 \quad 832$ E10000	1.00	LS	$\$ 20,000.00000$
STORM WATER POLLUTION PREVENTION PLAN		$\$ 20,000.00$	
0471	$832 E 20000$	$3,000.00$	EACH
EROSION CONTROL			$\$ 1.00000$

Total for Group 0016: \$23,000.00

Group 0017: Other Erosion Control Costs				
0049 670E00700   DITCH EROSION PROTECTION	0.00	SY		\$0.00
0050 B-OC-ERCO OTHER COSTS, EROSION CONTROL	1.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0051 \text { 659E00100 } \\ & \text { SOIL ANALYSIS TEST } \end{aligned}$	0.00	EACH	\$0.00000	\$0.00
0052 659E00300 TOPSOIL	0.00	CY		\$0.00
$\begin{aligned} & 0053 \text { 659E14000 } \\ & \text { REPAIR SEEDING AND MULCHING } \end{aligned}$	0.00	SY		\$0.00
0054 659E15000 INTER-SEEDING	0.00	SY	\$0.71000	\$0.00
$\begin{aligned} & 0055 \text { 659E20000 } \\ & \text { COMMERCIAL FERTILIZER } \end{aligned}$	0.00	TON		\$0.00
$\begin{aligned} & 0056659 \text { E31000 } \\ & \text { LIME } \end{aligned}$	0.00	ACRE	\$0.00000	\$0.00
$\begin{aligned} & 0057 \text { 659E35000 } \\ & \text { WATER } \end{aligned}$	0.00	MGAL	\$5.00000	\$0.00
0058 659E40000 MOWING	0.00	MSF	\$0.00000	\$0.00

Total for Group 0017: \$0.00
Group 0018: Underdrains

0059 C-MC-DRNG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, DRAINAGE			
$0062 \quad$ 605E05100	$1,223.00$	FT	$\$ 8.00000$
4" SHALLOW PIPE UNDERDRAINS			$\$ 9,784.00$

Total for Group 0018: \$9,784.00


Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'

0067 C-MC-DRNG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, DRAINAGE			$\$ 0.00$
0476 C-MC-DRNG	0.00	FT	$\$ 550.00000$
MAJOR COST DRIVERS, DRAINAGE			
$7: 28: 10 A M$			$\$ 0.00$
Thursday, December 02, 2010			Page 5 of 12

Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"

```
0477 C-MC-DRNG 0.00 EACH
 MAJOR COST DRIVERS, DRAINAGE
 Concrete - Headwalls/wingwalls
```

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'

0486 C-MC-DRNG			
MAJOR COST DRIVERS, DRAINAGE	1.00 LS	$\$ 0.00000$	$\$ 0.00$

0487 C-MC-DRNG $\quad 0.00$ FT $\$ 1,400.00000 \quad \$ 0.00$

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH

MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's

0076			
MAJOR COST DRIVERS, DRAINAGE	1.00	LS	$\$ 0.00000$

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
Group 0025: Closed Storm System

0077 C-MC-DRNG	1.00	LS	$\$ 0.00000$	
MAJOR COST DRIVERS, DRAINAGE				

Total for Group 0025: \$22,750.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
1.00 LS
$\$ 0.00000$
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes

0095 D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$
0494 D-MC-PVMT	0.00	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			
Includes 6" Agg Base and Subgrade Compaction		$\$ 0.00$	
$7: 28: 10 A M$		Page 6 of 12	

Group 0028: Mainline - Outside Shoulder

0100	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT		$\$ 0.00000$	
0495 D-MC-PVMT	0.00	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			$\$ 0.00$
Includes 6" Agg base and Subgrade Compaction			

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder

0115	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$	
0496	D-MC-PVMT	0.00	SY	$\$ 68.00000$

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)

0122	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT		$\$ 0.00000$	$\$ 0.00$
0497 D-MC-PVMT	0.00	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			$\$ 0.00$
Includes 6" Agg base and Subgrade Compaction			

Total for Group 0031: \$0.00
Group 0032: Non - Mainline Lanes

0132	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$	
0498	$3,309.00$	SY	$\$ 41.00000$	$\$ 135,669.00$

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$135,669.00

## Group 0041: Other Pavement Costs

0163 D-OC-PVMT	1.00 LS	$\$ 0.00000$	$\$ 0.00$
OTHER COSTS, PAVEMENT			

Total for Group 0041: \$0.00
Group 0042: Water Works

0164 E-MC-WATR	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, WATER LINE			
0165 E-OC-WATR	0.00	LS	$\$ 0.00000$

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:28:10AM
Thursday, December 02, 2010

Group 0044: Lighting - Full Interchange

0173   MAJOR COST DRIVERS, LIGHTING	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0499	G-MC-LTNG	0.00	EACH	$\$ 469,000.00000$

Group 0045: Lighting - Partial Interchange

| 0288 G-MC-LTNG | 0.00 | LS | $\$ 0.00000$ |
| :--- | :--- | :--- | :--- |$\$ 0.00$

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
$\$ 0.00000$
$\$ 0.00$
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG 1,510.00 FT
Lighting - Continuous
Total for Group 0046: \$52,850.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS $\$ 0.00000 \quad \$ 0.00$

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance

```
0178 H-OC-SURV 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
```

OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$0.00
Group 0049: Signs
0179 J-MC-TRAF $\quad 1.00 \mathrm{LS}$ \$0.00000 \$0.00
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF
0.29 MILE
\$250,000.00000
$\$ 72,500.00$
Signs
Total for Group 0049: \$72,500.00
Group 0050: Pavement Marking

0200	1.00	LS		$\$ 0.00000$
MAJOR COST DRIVERS, TRAFFIC CONTROL		$\$ 0.00$		
0502	0.11	MILE	$\$ 3,000.00000$	$\$ 330.00$
EDGE LINE	0.16	MILE	$\$ 2,000.00000$	$\$ 320.00$

Total for Group 0050: \$650.00
Group 0051: Other Traffic Control Costs
7:28:10AM
Thursday, December 02, 2010

0208 J-OC-TRAF			
OTHER COSTS, TRAFFIC CONTROL	1.00 LS	$\$ 0.00000$	$\$ 0.00$

OTHER COSTS, TRAFFIC CONTROL Total for Group 0051: \$0.00
Group 0052: Signals - Intersections

O212 K-MC-SGNL   MAJOR COST DRIVERS, SIGNALS	2.00	EACH	$\$ 175,000.00000$   Total for Group 0052:
		$\$ 350,000.00$	

Total for Group 0053: \$0.00
Group 0054: Landscaping

0214 L-MC-LSCP	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, LANDSCAPING			$\$ 0.00000$

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing

0216 M-MC-WALL	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, RETAINING WALLS				
0504 M-MC-WALL   Retaining Walls	0.00	SF	$\$ 135.00000$	$\$ 0.00$

Total for Group 0055: \$0.00

## Group 0056: Other Retaining Wall Costs

0217 M-OC-WALL
1.00 LS
$\$ 0.00000$
$\$ 0.00$

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition

0218	N-MC-DEMO	1.00	LS	\$0.00000	\$0.00
MAJOR COST DRIVERS, BUILDING DEMOLITION					
0219	N-OC-DEMO	1.00	LS	\$0.00000	\$0.00
OTHER COSTS, BUILDING DEMOLITION					
0533	202E56101	0.00	EACH	\$30,000.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0534	202E56101	0.00	EACH	\$15,000.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0535	202E56101	0.00	EACH	\$12,000.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0536	202E56101	0.00	EACH	\$7,500.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
Small Residential					
0537	202E98100	0.00	EACH	\$8,500.00000	\$0.00

Total for Group 0057: \$0.00
Group 0058: Noise Barrier

0220 P-MC-NSBR	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, NOISE BARRIER			$\$ 0.00$
0505 P-MC-NSBR	0.00	LS	$\$ 400.00000$

Total for Group 0058: \$0.00

Group 0059: Other Noise Barrier Costs				
022   OTHER COC-NSBR	1.00	LS	$\$ 0.00000$	$\$ 0.00$
O368 P-MC-NSBR   MAJOR COST DRIVERS, NOISE BARRIER	0.00	LS	$\$ 0.00000$	$\$ 0.00$

Total for Group 0059: \$0.00


Total for Group 0060: $\$ 4,338,088.00$
Group 0061: Rehabilitated Structures
$\begin{array}{llll}0223 & \text { R-MC-STRC } & 0.00 & \text { SF } \\ \text { MAJOR COST DRIVERS, STRUCTURES } & & \end{array}$
$\$ 45.00000$
$\$ 0.00$
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
$\$ 0.00000$
$\$ 0.00$
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: $\$ 0.00$
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$
$\$ 0.00$

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$
$\$ 0.00$
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC $\quad 1.00$ LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
$\$ 0.00000$
$\$ 0.00$

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
$\$ 0.00000$
Total for Group 0068: $\$ 0.00$
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS $\$ 0.00000$
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
$\begin{array}{lrlrl}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.29 & \text { MILE } & \$ 500,000.00000\end{array}$
$\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 0.29 & \text { MILE } & \$ 500,000.00000\end{array}$ OTHER COSTS, MAINTENANCE OF TRAFFIC

Group 0071: Wetland Construction

0234 T-MC-WTLD	0.00 LS	$\$ 0.00000$
MAJOR COST DRIVERS, WETLAND CONSTRUCTION		$\$ 0.00$
0360 T-MC-WTLD	$\$ 0.00$	$\$ 0.00000$

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:28:10AM
Thursday, December 02, 2010

Line \# Item Number

## Description

 Supplemental Description MAJOR COST DRIVERS, MISCELLANEOUS COSTS        OTHER COSTS, MISCELLANEOUS COSTS
    0237 100E00300 0.00 LS \$10,000.00000 \$0.00
SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE
LIABILITY INSURANCE
0238 623E10000 $\quad 1.00$ LS $\$ 26,797.62000 \quad \$ 26,797.62$
CONSTRUCTION LAYOUT STAKES
0.5\%
0239 614E11000 1.00 LS \$107,190.47000 \$107,190.47
MAINTAINING TRAFFIC
2\%
0240 619E16020 $\quad 19.00$ MNTH $\$ 2,500.00000 \quad \$ 47,500.00$

FIELD OFFICE, TYPE C		
$0242624 E 10000$	1.00 LS $\$ 200,000.00000$	$\$ 200,000.00$


| MOBILIZATION | LS |  |
| :---: | :---: | :---: | :---: |
| 511 103E05000 | $\$ 26,797.62000$ | $\$ 26,797.62$ |

        PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND
        0.5\%
    | 0518 | 0.00 | $\$ 0.00000$ | $\$ 0.00$ |
| :--- | :--- | :--- | :--- |
| 0519 | 0.00 | $\$ 0.00000$ | $\$ 0.00$ |
| 0520 | 0.00 | $\$ 0.00000$ | $\$ 0.00$ |
| 0521 | 0.00 | $\$ 0.00000$ | $\$ 0.00$ |
| 0532 | 0.00 | $\$ 0.00000$ | $\$ 0.00$ |

Total for Group 0072: \$408,285.71
Group 0073: Design Contingency Costs

0243	V-MC-CNTG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, CONTINGENCY COSTS		$\$ 0.00$		
0244	V-OC-CNTG	1.00	LS	$\$ 1,441,952.30000$

OTHER COSTS, CONTINGENCY COSTS 25\%

Total for Group 0073: \$1,441,952.30

## Group 0074: Inflation Contingency

0266			
OTHER COSTS, CONTINGENCY COSTS	0.00	LS	$\$ 0.00000$

Total for Group 0074: \$0.00

## Estimate Alt E KY cont 3

Estimated Cost: \$7,818,842.99
Contingency: 29.70\%
Estimated Total: \$10,141,039.36

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal

0001	A-MC-RDWY	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY				$\$ 0.00$
0343	$202 E 23000$	$2,006.00$	SY	$\$ 8.00000$


0003 A-MC-RDWY	$1,960.00$	CY	$\$ 30.00000$

Total for Group 0002: $\$ 58,800.00$

Group 0003: Excavation - Soil				
0004 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0344 203E10000   EXCAVATION	$17,640.00$	CY	$\$ 8.00000$	$\$ 141,120.00$

Total for Group 0003: \$141,120.00
Group 0004: Excavation - Hazardous

0006 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00 LS	$\$ 0.00000$	$\$ 0.00$
		Total for Group 0004: \$0.00	

Group 0005: Fill - Embankment (includes wasting excess excavation)

0007	A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$	
0345	$203 E 20000$	$19,600.00$	CY	$\$ 6.00000$

Total for Group 0005: \$117,600.00
Group 0006: Fill - Lime Modified Soil

0010 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0346 205E10050   LIME STABILIZED EMBANKMENT	0.00	CY	$\$ 7.00000$	$\$ 0.00$
0347 205E10300   LIME	0.00	TON	$\$ 5.00000$	$\$ 0.00$

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY $0.00 \mathrm{CY} \quad \$ 8.00000 \mathrm{\$ 0.00}$
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier

0012 A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$
0465 622E10060	0.00	FT	$\$ 110.00000$
7:29:02AM			
Thursday, December 02, 2010			$\$ 0.00$

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00


Total for Group 0009: \$0.00

Group 0010: Subgrade Treatment - Cement			
0016 A-MC-RDWYMAJOR COST DRIVERS, ROADWAY	533.00 sy	\$2.50000	\$1,332.50
		Total for Group 0010: \$1,332.50	
Group 0011: Subgrade Treatment - Undercut \& Backfill			
0017 A-MC-RDWY MAJOR COST DRIVERS, ROADWAY	1.00 LS	\$0.00000	\$0.00

Total for Group 0011: \$0.00


Line \# Item Number

## Description

Supplemental Description
PROOF ROLLING


ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 0.00 EACH $\$ 0.00$
ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 0.00 EACH
$\$ 0.00$
ANCHOR ASSEMBLY, TYPE T
$0041606 \mathrm{E} 35000 \quad 0.00 \mathrm{EACH} \quad \$ 0.00$ BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 0.00 EACH BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 $0.00 \mathrm{EACH} \quad \$ 0.00$ IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
$\$ 0.00$
AGGREGATE BASE
For Fencing
0424 601E32100 0.00 CY $\quad \$ 0.00$ ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
$\$ 0.00$
GATE, TYPE 47
For Fencing
0426 625E32000 0.00 EACH $\quad \$ 0.00$ GROUND ROD For Fencing
0466
0.00
$\$ 0.00000$
Total for Group 0012: \$0.00
Group 0014: Seeding \& Mulching / Sodding

0045	1.00	BSMC-ERCO	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, EROSION CONTROL			$\$ 0.00$	
0467	0.00	SY	$\$ 1.00000$	$\$ 0.00$
SEEDING AND MULCHING				$\$ 15.00000$

Total for Group 0014: \$0.00
Group 0015: Rock Channel Protection

0047	B-MC-ERCO	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, EROSION CONTROL		$\$ 0.00$		
0469	$601 E 32000$	0.00	CY	$\$ 75.00000$

Total for Group 0015: $\$ 0.00$
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO $\quad 1.00$ LS $\$ 0.00000 \quad \$ 0.00$

## Description Supplemental Description

MAJOR COST DRIVERS, EROSION CONTROL

$0470 \quad 832 E 10000$	1.00	LS	$\$ 20,000.00000$
STORM WATER POLLUTION PREVENTION PLAN			$\$ 20,000.00$
$0471 \quad 832 E 20000$	$10,000.00$	EACH	$\$ 1.00000$

Total for Group 0016: \$30,000.00

Group 0017: Other Erosion Control Costs				
0049 670E00700   DITCH EROSION PROTECTION	0.00	SY		\$0.00
0050 B-OC-ERCO OTHER COSTS, EROSION CONTROL	1.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0051 \text { 659E00100 } \\ & \text { SOIL ANALYSIS TEST } \end{aligned}$	0.00	EACH	\$0.00000	\$0.00
0052 659E00300 TOPSOIL	0.00	CY		\$0.00
$\begin{aligned} & 0053 \text { 659E14000 } \\ & \text { REPAIR SEEDING AND MULCHING } \end{aligned}$	0.00	SY		\$0.00
0054 659E15000 INTER-SEEDING	0.00	SY	\$0.71000	\$0.00
0055 659E20000 COMMERCIAL FERTILIZER	0.00	TON		\$0.00
$0056659 E 31000$ LIME	0.00	ACRE	\$0.00000	\$0.00
$\begin{aligned} & 0057 \text { 659E35000 } \\ & \text { WATER } \end{aligned}$	0.00	MGAL	\$5.00000	\$0.00
$\begin{aligned} & 0058 \text { 659E40000 } \\ & \text { MOWING } \end{aligned}$	0.00	MSF	\$0.00000	\$0.00

Total for Group 0017: \$0.00
$\left.\begin{array}{llll}\begin{array}{l}\text { Group 0018: Underdrains } \\ 0059 \text { C-MC-DRNG } \\ \text { MAJOR COST DRIVERS, DRAINAGE }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00$

Total for Group 0018: \$0.00


Total for Group 0019: $\$ 0.00$
Group 0021: Culverts, Type A: 5' - 10'

0067 C-MC-DRNG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, DRAINAGE			$\$ 0.00$
0476 C-MC-DRNG	0.00	FT	$\$ 550.00000$
MAJOR COST DRIVERS, DRAINAGE			
7:29:02AM			$\$ 0.00$
Thursday, December 02,2010			Page 5 of 12

## Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
0477 C-MC-DRNG $\quad 0.00$ EACH $\$ 2,000.00000 \quad \$ 0.00$ MAJOR COST DRIVERS, DRAINAGE Concrete - Headwalls/wingwalls

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'

0486	C-MC-DRNG	1.00	LS	\$0.00000	\$0.00
MAJOR COST DRIVERS, DRAINAGE					
0487	C-MC-DRNG	0.00	FT	\$1,400.00000	\$0.00
MAJOR COST DRIVERS, DRAINAGE					
Pipe Structures - Reinforced Concrete Pipe 10'-20'					
0488	C-MC-DRNG	0.00	EACH	\$1,500.00000	\$0.00
MA	OR COST DRI				
Con	rete Masonry				

Total for Group 0022: \$0.00
Group 0024: BMP's

0076	C-MC-DRNG	1.00 LS	$\$ 0.00000$

## MAJOR COST DRIVERS, DRAINAGE

Total for Group 0024: \$0.00


Total for Group 0025: \$0.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG<br>OTHER COSTS, DRAINAGE

1.00 LS
$\$ 0.00000$
$\$ 0.00$
Total for Group 0026: \$0.00
Group 0027: Mainline - Travel Lanes

0095	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$	
0494 D-MC-PVMT	0.00	SY	$\$ 68.00000$	
13" Reinforced Concrete Pavement			$\$ 0.00$	
Includes 6" Agg Base and Subgrade Compaction				

Group 0028: Mainline - Outside Shoulder

0100 D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$
0495 D-MC-PVMT	0.00	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			
Includes 6" Agg base and Subgrade Compaction		Total for Group 0028: $\$ 0.00$	

Group 0030: Mainline - Inside Shoulder

0115   MAJOR COST DRIVERS, PAVEMENT	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0496	D-MC-PVMT	0.00	SY	$\$ 68.00000$

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)

0122	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT		$\$ 0.00000$	$\$ 0.00$
0497 D-MC-PVMT	0.00	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			$\$ 0.00$
Includes 6" Agg base and Subgrade Compaction			

Total for Group 0031: \$0.00
Group 0032: Non - Mainline Lanes

0132	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$	
0498	D-MC-PVMT	533.00	SY	$\$ 41.00000$

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$21,853.00

## Group 0041: Other Pavement Costs

0163 D-OC-PVMT	1.00 LS	$\$ 0.00000$

Total for Group 0041: \$0.00

Group 0042: Water Works			
$0164 \quad$ E-MC-WATR			
MAJOR COST DRIVERS, WATER LINE	0.00	LS	$\$ 0.00000$
$0165 \quad$ E-OC-WATR   OTHER COSTS, WATER LINE	0.00	LS	$\$ 0.00000$

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:29:02AM
Thursday, December 02, 2010

Group 0044: Lighting - Full Interchange

0173   MAJOR COST DRIVERS, LIGHTING	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0499	G-MC-LTNG	0.00	EACH	$\$ 469,000.00000$

Group 0045: Lighting - Partial Interchange

0288 G-MC-LTNG	0.00	LS	$\$ 0.00000$

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
$\$ 0.00000$
$\$ 0.00$
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG 840.00 FT
$\$ 35.00000$
\$29,400.00
Lighting - Continuous
Total for Group 0046: \$29,400.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS $\$ 0.00000 \quad \$ 0.00$

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance

$0178 \mathrm{H}-\mathrm{OC}-$ SURV	0.00 LS	$\$ 0.00000$	$\$ 0.00$
OTHER COSTS, TRAFFIC SURVEILLANCE			

Total for Group 0048: \$0.00
Group 0049: Signs
0179 J-MC-TRAF 1.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 0.1 Signs
\$250,000.00000
$\$ 40,000.00$
Total for Group 0049: \$40,000.00
Group 0050: Pavement Marking

0200	1.00	LS MC-TRAF	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, TRAFFIC CONTROL		$\$ 540.00$		
0502	0.18	MILE	$\$ 3,000.00000$	$\$ 260.00$

Total for Group 0050: \$800.00
Group 0051: Other Traffic Control Costs
7:29:02AM
Thursday, December 02, 2010

Description
Supplemental Description

0208			
J-OC-TRAF	1.00 LS	$\$ 0.00000$	$\$ 0.00$

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections

0212 K-MC-SGNL   MAJOR COST DRIVERS, SIGNALS	2.00	EACH	$\$ 175,000.00000$   Total for Group 0052:	$\$ 350,000.00$

Total for Group 0053: \$0.00
Group 0054: Landscaping

0214 L-MC-LSCP	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, LANDSCAPING			$\$ 0.00$
0215 L-OC-LSCP	1.00	LS	$\$ 0.00000$

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing

$0216 \quad$ M-MC-WALL	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, RETAINING WALLS			
0504 M-MC-WALL	0.00	SF	$\$ 135.00000$

Total for Group 0055: \$0.00

## Group 0056: Other Retaining Wall Costs

0217 M-OC-WALL
1.00 LS
\$0.00000
\$0.00

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition


Total for Group 0057: \$0.00

Group 0058: Noise Barrier   0220 P-MC-NSBR   MAJOR COST DRIVERS, NOISE BARRIER	1.00	LS	
0505 P-MC-NSBR   Noise Barrier	0.00	LS	$\$ 0.00000$

Total for Group 0058: \$0.00

Group 0059: Other Noise Barrier Costs				
$0221 \quad$ P-OC-NSBR      OTHER COSTS, NOISE BARRIER 1.00 LS $\$ 0.00000$				
0368 P-MC-NSBR   MAJOR COST DRIVERS, NOISE BARRIER	0.00	LS	$\$ 0.00000$	$\$ 0.00$

Total for Group 0059: \$0.00


Total for Group 0060: \$4,945,643.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
$\$ 45.00000$
$\$ 0.00$
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
$\$ 0.00000$
$\$ 0.00$
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: $\$ 0.00$
Group 0063: Temporary Road and Pavement Costs

0225 S-MC-MNTC	$1.00 \quad$ LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC	

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$
$\$ 0.00$
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$
$\$ 0.00$
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC $\quad 1.00$ LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: $\$ 0.00$
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
$\$ 0.00000$
$\$ 0.00$

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
$\$ 0.00000$
$\$ 0.00$
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS $\$ 0.00000$
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
$\begin{array}{lrlrl}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.16 & \text { MILE } & \$ 500,000.00000\end{array}$
OTHER COSTS, MAINTENANCE OF TRAFFIC $\$ 500,000.00000$

Total for Group 0070: \$80,000.00
Group 0071: Wetland Construction

0234 T-MC-WTLD	0.00 LS	$\$ 0.00000$
MAJOR COST DRIVERS, WETLAND CONSTRUCTION		$\$ 0.00$
0360 T-MC-WTLD	0.00 LS	$\$ 0.00000$

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:29:02AM
Thursday, December 02, 2010

Line \# Item Number
Description

Unit Price

0235	U-MC-MISC	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, MISCELLANEOUS COSTS		$\$ 0.00$		
$0236 \quad$ U-OC-MISC	0.00	LS	$\$ 0.00000$	$\$ 0.00$
OTHER COSTS, MISCELLANEOUS COSTS				$\$ 0.00$

        SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE
        LIABILITY INSURANCE
    0238 623E10000 $\quad 1.00 \mathrm{LS} \quad \$ 29,162.98000 \quad \$ 29,162.98$
CONSTRUCTION LAYOUT STAKES
0.5\%
0239 614E11000
1.00 LS \$116,651.93000
\$116,651.93
MAINTAINING TRAFFIC
2\%

0240 619E16020	19.00	MNTH	$\$ 2,500.00000$	$\$ 47,500.00$
FIELD OFFICE, TYPE C	1.00	LS	$\$ 200,000.00000$	
0242 624E10000				
MOBILIZATION	1.00	LS	$\$ 29,162.98000$	$\$ 29,162.98$
0511 103E05000				
PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND				
$0.5 \%$	0.00	$\$ 0.00000$	$\$ 0.00$	
0518	0.00	$\$ 0.00000$	$\$ 0.00$	
0519	0.00	$\$ 0.00000$	$\$ 0.00$	
0520	0.00	$\$ 0.00000$	$\$ 0.00$	

Total for Group 0072: \$422,477.89

## Group 0073: Design Contingency Costs

0243 V-MC-CNTG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, CONTINGENCY COSTS		$\$ 0.00$	
0244 V-OC-CNTG	1.00	LS	$\$ 1,563,768.60000$
OTHER COSTS, CONTINGENCY COSTS			$\$ 1,563,768.60$
$25 \%$			

Total for Group 0073: \$1,563,768.60

## Group 0074: Inflation Contingency

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
$\$ 0.00000$
Total for Group 0074: \$0.00

# Estimate Alt E KY cont 5 

Estimated Cost: $\$ 71,530,905.30$
Contingency: 57.60\%
Estimated Total: \$112,732,706.75

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal

0001	A-MC-RDWY	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$	
0343	202E23000	$212,051.00$	SY	$\$ 8.00000$

PAVEMENT REMOVED

Group 0002: Excavation - Rock
0003 A-MC-RDWY

MAJOR COST DRIVERS, ROADWAY | $146,868.00$ | CY | $\$ 30.00000$ | $\$ 4,406,040.00$ |
| :--- | :--- | :--- | :--- |

Total for Group 0002: \$4,406,040.00
Group 0003: Excavation - Soil

0004 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
$0344 ~ 203 E 10000$   EXCAVATION	$342,692.00$	CY	$\$ 8.00000$	$\$ 2,741,536.00$

Total for Group 0003: \$2,741,536.00
Group 0004: Excavation - Hazardous

0006   MAJOR COST DRIVERS, ROADWAY	1.00 LS	$\$ 0.00000$	$\$ 0.00$
		Total for Group 0004: \$0.00	

Group 0005: Fill - Embankment (includes wasting excess excavation)

0007 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY			$\$ 2,937,360.00$	

Total for Group 0005: $\$ 2,937,360.00$
Group 0006: Fill - Lime Modified Soil

0010 A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$
0346 205E10050   LIME STABILIZED EMBANKMENT	0.00	CY	$\$ 7.00000$
0347 205E10300   LIME	0.00	TON	$\$ 5.00000$

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY $0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00$ MAJOR COST DRIVERS, ROADWAY

Total for Group 0007: \$0.00
Group 0008: Concrete Barrier

0012	A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY				$\$ 0.00$
0465	202510060	$20,800.00$	FT	$\$ 110.00000$
$7: 31: 24 A M$			Page 2 of 12	

CONCRETE BARRIER, SINGLE SLOPE, TYPE B

Total for Group 0008: $\$ 2,288,000.00$
Group 0009: Subgrade Treatment - Lime

0014 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY				

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement

298,491.00 SY
0016 A-MC-RDWY

Total for Group 0010: $\$ 746,227.50$
Group 0011: Subgrade Treatment - Undercut \& Backfill

0017 A-MC-RDWY	1.00 LS	$\$ 0.00000$	$\$ 0.00$

Total for Group 0011: \$0.00

## Group 0012: Other Roadway Costs

0019 A-OC-RDWY   OTHER COSTS, ROADWAY Contingency	0.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0020 \text { 201E11000 } \\ & \text { CLEARING AND GRUBBING } \end{aligned}$	0.00	LS	\$856,500.00000	\$0.00
$\begin{aligned} & 0021 \text { 201E21800 } \\ & \text { TREE REMOVED, } 18 " \text { SIZE } \end{aligned}$	0.00	EACH	\$250.00000	\$0.00
$\begin{aligned} & 0022 \text { 201E23000 } \\ & \text { TREE REMOVED, } 30 \text { " SIZE } \end{aligned}$	0.00	EACH	\$405.00000	\$0.00
$\begin{aligned} & 0023 \text { 201E24800 } \\ & \text { TREE REMOVED, 48" SIZE } \end{aligned}$	0.00	EACH	\$772.00000	\$0.00
$0026 \text { 202E11000 }$   STRUCTURE REMOVED	0.00	LS	\$9,310.13000	\$0.00
$\begin{aligned} & 0028 \text { 202E35200 } \\ & \text { PIPE REMOVED, OVER } 24 " \end{aligned}$	0.00	FT		\$0.00
0029 202E38000   GUARDRAIL REMOVED	0.00	FT		\$0.00
$\begin{aligned} & 0030 \text { 202E42206 } \\ & \text { ANCHOR ASSEMBLY REMOVED } \end{aligned}$	0.00	EACH		\$0.00
$\begin{aligned} & 0031 \text { 202E58000 } \\ & \text { MANHOLE REMOVED } \end{aligned}$	0.00	EACH		\$0.00
$\begin{aligned} & 0032 \quad 202 E 58100 \\ & \text { CATCH BASIN REMOVED } \end{aligned}$	0.00	EACH		\$0.00
$\begin{aligned} & 0033 \quad 202 E 75000 \\ & \text { FENCE REMOVED } \end{aligned}$	0.00	FT		\$0.00
0034 204E45000	0.00	HOUR	\$126.59000	\$0.00

7:31:24AM
Thursday, December 02, 2010

Line \# Item Number

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000

0.00 SY	$\$ 0.81000$	$\$ 0.00$
0.00	FT	$\$ 0.00$

SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
GUARDRAIL, TYPE 5
$0038606 \mathrm{E} 22000 \mathrm{EACH} \quad \$ 0.00$
ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 $0.00 \mathrm{EACH} \quad \$ 0.00$
ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 0.00 EACH
$\$ 0.00$
ANCHOR ASSEMBLY, TYPE T
$0041606 \mathrm{E} 35000 \quad 0.00 \mathrm{EACH} \quad \$ 0.00$ BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 0.00 EACH BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 $0.00 \mathrm{EACH} \quad \$ 0.00$ IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
$\$ 0.00$
AGGREGATE BASE
For Fencing
0424 601E32100 0.00 CY $\quad \$ 0.00$ ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
$\$ 0.00$
GATE, TYPE 47
For Fencing
0426 625E32000
0.00 EACH
$\$ 0.00$ GROUND ROD For Fencing
0466
0.00

Unit Price

##  <br> Description Supplemental Description

000 FT
$\$ 0.00$
\$4,200.00
$\$ 0.00$
$\$ 0.00$


## Description Supplemental Description

MAJOR COST DRIVERS, EROSION CONTROL

$0470 \quad 832$ E10000	1.00	LS	$\$ 50,000.00000$	$\$ 50,000.00$
STORM WATER POLLUTION PREVENTION PLAN		$\$ 1.00000$	$\$ 300,000.00$	
0471	$832 E 20000$	$300,000.00$	EACH	
EROSION CONTROL				

Total for Group 0016: \$350,000.00

Group 0017: Other Erosion Control Costs				
0049 670E00700   DITCH EROSION PROTECTION	0.00	SY		\$0.00
	1.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0051 \text { 659E00100 } \\ & \text { SOIL ANALYSIS TEST } \end{aligned}$	0.00	EACH	\$0.00000	\$0.00
0052 659E00300 TOPSOIL	0.00	CY		\$0.00
$\begin{aligned} & 0053 \text { 659E14000 } \\ & \text { REPAIR SEEDING AND MULCHING } \end{aligned}$	0.00	SY		\$0.00
0054 659E15000 INTER-SEEDING	0.00	SY	\$0.71000	\$0.00
0055 659E20000 COMMERCIAL FERTILIZER	0.00	TON		\$0.00
$\begin{aligned} & 0056659 \text { E31000 } \\ & \text { LIME } \end{aligned}$	0.00	ACRE	\$0.00000	\$0.00
$\begin{aligned} & 0057 \text { 659E35000 } \\ & \text { WATER } \end{aligned}$	0.00	MGAL	\$5.00000	\$0.00
0058 659E40000 MOWING	0.00	MSF	\$0.00000	\$0.00

Total for Group 0017: \$0.00

Group 0018: Underdrains				
0059 C-MC-DRNG   MAJOR COST DRIVERS, DRAINAGE	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0062 605E05100   4" SHALLOW PIPE UNDERDRAINS	$29,635.00$	FT	$\$ 8.00000$	$\$ 237,080.00$

Total for Group 0018: \$237,080.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS $\$ 0.00000 \quad \$ 0.00$
$\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & 86.00 & \text { FT } & \$ 350.00000\end{array}$
MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
2.00 EACH
\$1,500.00000
\$3,000.00 MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: $\$ 33,100.00$
Group 0021: Culverts, Type A: 5' - 10'

0067 C-MC-DRNG	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, DRAINAGE	36.00	FT	$\$ 550.00000$	$\$ 19,800.00$
0476 C-MC-DRNG				
MAJOR COST DRIVERS, DRAINAGE				

Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"

```
0477 C-MC-DRNG 1.00 EACH
 MAJOR COST DRIVERS, DRAINAGE
 Concrete - Headwalls/wingwalls
$2,000.00000
$2,000.00
```

Total for Group 0021: \$21,800.00
Group 0022: Culverts, Type A: 10' - 20'

0486 C-MC-DRNG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, DRAINAGE			
0487 C-MC-DRNG	0.00	FT	$\$ 1,400.00000$
MAJOR COST DRIVERS, DRAINAGE			
Pipe Structures - Reinforced Concrete Pipe	$10^{\prime}-20^{\prime}$		$\$ 1,500.00000$
0488 C-MC-DRNG	0.00	EACH	
MAJOR COST DRIVERS, DRAINAGE			$\$ 0.00$
Concrete Masonry			

Total for Group 0022: $\$ 0.00$
Group 0024: BMP's

0076	C-MC-DRNG	1.00 LS	$\$ 0.00000$

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00

## Group 0025: Closed Storm System



Total for Group 0025: \$1,101,800.00

## Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
1.00 LS

S
$\$ 0.00000$
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes

0095	1.00	LS	
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00000$
0494 D-MC-PVMT	$171,479.00$	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			
Includes 6" Agg Base and Subgrade Compaction			$\$ 11,660,572.00$
$7: 31: 24 A M$			

Group 0028: Mainline - Outside Shoulder

0100	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00000$
0495 D-MC-PVMT	$38,883.00$	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			$\$ 2,644,044.00$
Includes 6" Agg base and Subgrade Compaction			

Total for Group 0028: \$2,644,044.00
Group 0030: Mainline - Inside Shoulder

0115	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT		$\$ 0.00000$	$\$ 0.00$
0496	D-MC-PVMT	$38,377.00$	SY
13" Reinforced Concrete Pavement		$\$ 68.00000$	$\$ 2,609,636.00$
Includes 6" Agg base and Subgrade Compaction			

Total for Group 0030: \$2,609,636.00
Group 0031: Non - Mainline Lanes

0532	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT				$\$ 0.00$
0533	D-MC-PVMT	$3,441.00$	SY	$\$ 41.00000$

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction

Total for Group 0031: \$141,081.00
Group 0036: Ramps (including shoulders)

0122	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT				$\$ 0.00$
0497	D-MC-PVMT	$46,310.00$	SY	$\$ 68.00000$

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0036: \$3,149,080.00

## Group 0041: Other Pavement Costs

0163 D-OC-PVMT	1.00 LS	$\$ 0.00000$	$\$ 0.00$
OTHER COSTS, PAVEMENT			

Total for Group 0041: \$0.00

Group 0042: Water Works			
$0164 \quad$ E-MC-WATR			
MAJOR COST DRIVERS, WATER LINE	0.00	LS	$\$ 0.00000$
$0165 \quad$ E-OC-WATR   OTHER COSTS, WATER LINE	0.00	LS	$\$ 0.00000$

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:31:24AM
Thursday, December 02, 2010

Total for Group 0043: \$0.00
Group 0044: Lighting - Full Interchange

0173 G-MC-LTNG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, LIGHTING			$\$ 0.00$
0499 G-MC-LTNG	2.00	EACH	$\$ 469,000.00000$
MAJOR COST DRIVERS, LIGHTING			Total for Group 0044: $\$ 938,000.00$

Group 0045: Lighting - Partial Interchange

0288 G-MC-LTNG	0.00	LS	$\$ 0.00000$

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG $13,415.00$ FT
Lighting - Continuous
$\$ 0.00000$
$\$ 0.00$
$\$ 35.00000$
\$469,525.00
Total for Group 0046: \$469,525.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS $\$ 0.00000 \quad \$ 0.00$

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
$0178 \mathrm{H}-\mathrm{OC}-$ SURV
1.00 LS
\$537,486.54000
\$537,486.54
OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$537,486.54
Group 0049: Signs
0179 J-MC-TRAF $\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00$
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF
2.54 MILE
\$250,000.00000
\$635,000.00
Signs
Total for Group 0049: $\$ 635,000.00$
Group 0050: Pavement Marking

0200	1.00	LS		$\$ 0.00000$
MAJOR COST DRIVERS, TRAFFIC CONTROL		$\$ 0.00$		
0502	18.30	MILE	$\$ 3,000.00000$	$\$ 54,900.00$
EDGE LINE				$\$ 35,860.00$

Total for Group 0050: \$90,760.00
Group 0051: Other Traffic Control Costs

7:31:24AM
Thursday, December 02, 2010

Description
Supplemental Description

0208 J-OC-TRAF	1.00 LS	$\$ 0.00000$	$\$ 0.00$

Total for Group 0051: \$0.00
Group 0052: Signals - Intersections


Total for Group 0053: \$0.00
Group 0054: Landscaping

0214 L-MC-LSCP	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, LANDSCAPING			$\$ 0.00$
0215 L-OC-LSCP	1.00	LS	$\$ 0.00000$

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing

0216 M-MC-WALL	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, RETAINING WALLS			$\$ 1,197,450.00$	
0504 M-MC-WALL	$8,870.00$	SF	$\$ 135.00000$	

Total for Group 0055: \$1,197,450.00

## Group 0056: Other Retaining Wall Costs

0217 M-OC-WALL
1.00 LS
\$0.00000
\$0.00

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition

0218	N-MC-DEMO	1.00	LS	\$0.00000	\$0.00
MAJOR COST DRIVERS, BUILDING DEMOLITION					
0219	N-OC-DEMO	1.00	LS	\$0.00000	\$0.00
OTHER COSTS, BUILDING DEMOLITION					
0534	202E56101	3.00	EACH	\$7,500.00000	\$22,500.00
BUILDING DEMOLISHED, AS PER PLAN					
0535	202E56101	2.00	EACH	\$12,000.00000	\$24,000.00
BUILDING DEMOLISHED, AS PER PLAN					
0536	202E56101	0.00	EACH	\$15,000.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0537	Small Commercial				
BUILDING DEMOLISHED, AS PER PLAN					
Large Commercial					
0538	202E98100	0.00	EACH	\$8,500.00000	\$0.00


Group 0058: Noise Barrier				
0220 P-MC-NSBR   MAJOR COST DRIVERS, NOISE BARRIER   0505 P-MC-NSBR   Noise Barrier	1.00	LS	$\$ 0.00000$	$\$ 0.00$

Total for Group 0058: \$1,457,600.00

Group 0059: Other Noise Barrier Costs				
0221 P-OC-NSBR   OTHER COSTS, NOISE BARRIER	1.00	LS	$\$ 0.00000$	$\$ 0.00$
O368 P-MC-NSBR   MAJOR COST DRIVERS, NOISE BARRIER	0.00	LS	$\$ 0.00000$	$\$ 0.00$

Total for Group 0059: \$0.00


Total for Group 0060: \$10,627,680.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
$\$ 45.00000$
$\$ 0.00$
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs

0224 R-OC-STRC
0.00 LS
$\$ 0.00000$
$\$ 0.00$
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: $\$ 0.00$
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
$\$ 0.00000$
$\$ 0.00$
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)
0226 S-MC-MNTC 1.00 LS $\$ 0.00000 \quad \$ 0.00$

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators

0227 S-MC-MNTC 1.00 LS

$\$ 0.00000$

$\$ 0.00$

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC $\quad 1.00$ LS \$0.00000 \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
$\$ 0.00000$
$\$ 0.00$

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
$\$ 0.00000$
$\$ 0.00$
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS $\$ 0.00$
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
$\begin{array}{lllll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 2.54 & \text { MILE } & \$ 500,000.00000\end{array}$
$\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 2.54 & \text { MILE } & \$ 500,000.00000\end{array} \$ 1,270,000.00$
Total for Group 0070: \$1,270,000.00
Group 0071: Wetland Construction

0234 T-MC-WTLD	0.00 LS	$\$ 0.00000$
MAJOR COST DRIVERS, WETLAND CONSTRUCTION		$\$ 0.00$
0360 T-MC-WTLD	0.00 LS	$\$ 0.00000$

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:31:24AM
Thursday, December 02, 2010

Line \# Item Number
Description

Unit Price

0235	U-MC-MISC	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, MISCELLANEOUS COSTS		$\$ 0.00$		
$0236 \quad$ U-OC-MISC	0.00	LS	$\$ 0.00000$	$\$ 0.00$
OTHER COSTS, MISCELLANEOUS COSTS				$\$ 0.00$

0238 623E10000 $1.00 \mathrm{LS} \quad \$ 271,430.70000 \quad \$ 271,430.70$
CONSTRUCTION LAYOUT STAKES
0.5\%
0239 614E11000 1.00 LS \$1,085,722.80000 \$1,085,722.80
MAINTAINING TRAFFIC
2\%

0240 619E16020	44.00	MNTH	$\$ 2,500.00000$	$\$ 110,000.00$
FIELD OFFICE, TYPE C	1.00	LS	$\$ 1,200,000.00000$	$\$ 1,200,000.00$
0242 624E10000				
MOBILIZATION	1.00	LS	$\$ 271,430.70000$	$\$ 271,430.70$
0511 103E05000				
PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND				
$0.5 \%$	0.00	$\$ 0.00000$	$\$ 0.00$	
0518	0.00	$\$ 0.00000$	$\$ 0.00$	
0519	0.00	$\$ 0.00000$	$\$ 0.00$	
0520	0.00	$\$ 0.00000$	$\$ 0.00$	

Total for Group 0072: $\$ 2,938,584.20$

## Group 0073: Design Contingency Costs

0243 V-MC-CNTG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, CONTINGENCY COSTS		$\$ 0.00$	
0244 V-OC-CNTG	1.00	LS	$\$ 14,306,181.06000$
OTHER COSTS, CONTINGENCY COSTS			$\$ 14,306,181.06$
$25 \%$			

Total for Group 0073: \$14,306,181.06

## Group 0074: Inflation Contingency

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
$\$ 0.00000$
Total for Group 0074: \$0.00
$\qquad$ County $\qquad$ Route $\qquad$ Section

Macro View													ibutes		
Acquisition	Unit (SF) or (Acreage)	X	Cost/Unit (\$\$/SF)   (\$\$/Acre)	Subtotal Land Value	+	$\begin{gathered} \hline \text { Structure } \\ \text { Values } \\ \text { (if Taken) } \\ \hline \end{gathered}$	+	Damages   (Loss in Value   to the Residue)	Subtotal      Damages	$=$	Total Non Labor Acquisition Costs	Parcel Count	Total Takes	Partial   Takes	No. of Structures Impacted
-Residential	3.31	x	\$82,451.65	\$272,750	+	855500	+	N/A	\$855,500.00	=	\$1,128,250.05	17	6	11	5
-Commercial	6.68	x	\$147,451.64	\$985,065	+	1135000	+	N/A	\$1,135,000.00	=	\$2,120,065.42	19	1	18	1
-Industrial	0	x	\$0.00	\$0	+	0	+	N/A	\$0.00	=	\$0.00	0	0	0	0
-Agricultural	0	x	\$0.00	\$0	+	0	+	N/A	\$0.00	$=$	\$0.00	0	0	0	0
Relocation	Unit (Displacement)	X	*RHP/	RSP	+	Move Cost	+	Reestablis	shment	$=$	Total Non Labor RAP Costs	Estim	amount of ti all RAP parc	necessary   $=$ (months)	relocate   24
-Residential Owner Occupant Tenant	$\begin{gathered} 3 \\ 14 \end{gathered}$	x $\begin{aligned} & \text { x } \\ & \text { x }\end{aligned}$	$\$ 34$, $\$ 10$,	,000	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \$ 6,000 \\ & \$ 1,750 \end{aligned}$				$=$	$\begin{aligned} & \$ 120,000 \\ & \$ 164,500 \end{aligned}$	Estima ac	number of yea isition begins =	until proje	wide R/W   . 5
-Commerical/Farm/NPO Owner Tenant	$\begin{aligned} & 1 \\ & 1 \end{aligned}$				x x x	$\begin{aligned} & \$ 15,000 \\ & \$ 15,000 \end{aligned}$	$\left\lvert\, \begin{aligned} & + \\ & + \end{aligned}\right.$			$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{aligned} & \$ 25,000 \\ & \$ 25,000 \end{aligned}$				
-Personal Property	0				x	\$1,000				$=$	\$0				
$\{[($ Total Cost of Acquisition Cost $) \times 0.90] \times 0.025\}+\{[$ (Total of Acquisition Cost $) \times 0.15] \times 1.20\}+\{[($ Total of Acquisition Cost) $\times 0.10] \times 1.50\}=$ Contingency							Contingency(Incidentals, Admin. Review \& Appropriation)				1145031.203	*RHP - Replacement Housing Payment   *RSP - Rent Supplemental Payment   *NPO - Non-Profit Organization			
							Total Non Labor R/W Costs				\$4,727,846.67				

Instruction for Acquisition \& Relocation Cost Estimates

Labor (External)	Unit (Parcels)	x	Unit Price	=	Total Cost
Titles	36	X	\$400	=	\$14,400
Appraisal -Simple -Detailed	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{gathered} \$ 750 \\ \$ 4,500 \end{gathered}$	$=$ $=$	$\begin{gathered} \$ 9,000 \\ \$ 108,000 \end{gathered}$
Appraisal Review -Simple -Detailed	$\begin{aligned} & 12 \\ & 24 \\ & \hline \end{aligned}$	$\begin{gathered} x \\ x \end{gathered}$	$\begin{gathered} \$ 500 \\ \$ 2,000 \end{gathered}$	$=$	$\begin{aligned} & \$ 6,000 \\ & \$ 48,000 \end{aligned}$
Negotiations	36	x	\$1,100	=	\$39,600
Relocations   -Personal Property   -Residential   -Commercial/Farm/*NPO	$\begin{gathered} 0 \\ 17 \\ 1 \end{gathered}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \$ 1,500 \\ & \$ 5,200 \\ & \$ 5,600 \end{aligned}$	$=$ $=$ $=$	$\begin{gathered} \$ 0 \\ \$ 88,400 \\ \$ 5,600 \end{gathered}$
Closings	36	x	\$400	$=$	\$14,400
Project Management	36	x	\$550	$=$	\$19,800
Asbestos Testing \& Abatement		x		=	
	Total Labor Costs				\$353,200
*NPO = Non-Profit Organization					



Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpact of project on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates hat involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The person making the cost estimate may adjust the igures given for the particular project being estimated to reflect local labor costs. It is critical that the
estimate be labeled to reflect the alignment
and alternative, the step in the PDP process and
person(s) performing the estimate.
Comments
Cost/Unit were generated from auditors tax card data

Total Labor Costs	$\$ 353,200.00$
Total Non Labor R/W Costs	$\$ 4,727,846.67$
Inflation Adjustments	$\$ 416,645.83$
Total R/W Costs	$\$ 5,497,692.50$

# Estimate Alt E KY cont 6 

Estimated Cost: $\$ 33,202,743.20$
Contingency: 53.80\%
Estimated Total: \$51,065,819.04

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal

0001	A-MC-RDWY	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY				$\$ 0.00$
0343	202E23000	$52,245.00$	SY	$\$ 8.00000$

Group 0002: Excavation - Rock
0003 A-MC-RDWY

MAJOR COST DRIVERS, ROADWAY	$331,350.00 ~ C Y$	$\$ 30.00000$	$\$ 9,940,500.00$

Total for Group 0002: \$9,940,500.00
Group 0003: Excavation - Soil

0004   MAJOR COST DRIVERS, ROADWAY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0344 203E10000   EXCAVATION	$331,350.00$	CY	$\$ 8.00000$	$\$ 2,650,800.00$

Total for Group 0003: \$2,650,800.00
Group 0004: Excavation - Hazardous

0006 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00 LS	$\$ 0.00000$	Total for Group 0004: \$0.00

Group 0005: Fill - Embankment (includes wasting excess excavation)

0007	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY			$\$ 3$	
0345	$662,700.00$	CY	$\$ 6.00000$	$\$ 3,976,200.00$

Total for Group 0005: \$3,976,200.00
Group 0006: Fill - Lime Modified Soil

0010 A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY	0.00	CY	$\$ 0.00$
0346 205E10050   LIME STABILIZED EMBANKMENT			$\$ 7.00000$
LIME			

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY $0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00$ MAJOR COST DRIVERS, ROADWAY

Total for Group 0007: \$0.00
Group 0008: Concrete Barrier

0012 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY			$\$ 396,000.00$	
$0465 ~ 622 E 10060$	$3,600.00$	FT	$\$ 110.00000$	
$7: 33: 14 A M$				Page 2 of 12

CONCRETE BARRIER, SINGLE SLOPE, TYPE B

Total for Group 0008: $\$ 396,000.00$
Group 0009: Subgrade Treatment - Lime

0014 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY				

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement
0016 A-MC-RDWY $81,883.00$ SY

Total for Group 0010: $\$ 204,707.50$

Group 0011: Subgrade Treatment - Undercut \& Backfill

0017 A-MC-RDWY	1.00 LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY			

Total for Group 0011: \$0.00


7:33:14AM
Thursday, December 02, 2010

## Description Supplemental Description

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000

0.00 SY	$\$ 0.81000$	$\$ 0.00$
0.00	FT	$\$ 0.00$

SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
GUARDRAIL, TYPE 5
0038 606E22000 0.00 EACH $\$ 0.00$
ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 0.00 EACH
$\$ 0.00$
ANCHOR ASSEMBLY, TYPE T
$0041606 \mathrm{E} 35000 \quad 0.00 \mathrm{EACH} \quad \$ 0.00$ BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100
0.00
$\$ 0.00$ BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 $0.00 \mathrm{EACH} \quad \$ 0.00$ IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
$\$ 0.00$
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
$\$ 0.00$
AGGREGATE BASE
For Fencing
0424 601E32100 0.00 CY $\quad \$ 0.00$ ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
$\$ 0.00$
GATE, TYPE 47
For Fencing
0426 625E32000
0.00 EACH
$\$ 0.00$ GROUND ROD For Fencing
0466
0.00
$\$ 0.00000$
$\$ 0.00$
Total for Group 0012: \$17,500.00
Group 0014: Seeding \& Mulching / Sodding

0045	B-MC-ERCO	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, EROSION CONTROL			$\$ 0.00$	
0467	$659 E 10000$			
SEEDING AND MULCHING	$67,695.00$	SY	$\$ 1.00000$	$\$ 67,695.00$
0531	$660 E 25000$	0.00	SY	$\$ 15.00000$

Total for Group 0014: $\$ 67,695.00$

## Group 0015: Rock Channel Protection



## Description Supplemental Description

MAJOR COST DRIVERS, EROSION CONTROL

$0470 \quad 832 E 10000$	1.00	LS	$\$ 50,000.00000$	$\$ 50,000.00$
STORM WATER POLLUTION PREVENTION PLAN		$\$ 1.00000$	$\$ 300,000.00$	

Total for Group 0016: \$350,000.00

Group 0017: Other Erosion Control Costs				
0049 670E00700   DITCH EROSION PROTECTION	0.00	SY		\$0.00
	1.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0051 \text { 659E00100 } \\ & \text { SOIL ANALYSIS TEST } \end{aligned}$	0.00	EACH	\$0.00000	\$0.00
0052 659E00300 TOPSOIL	0.00	CY		\$0.00
$\begin{aligned} & 0053 \text { 659E14000 } \\ & \text { REPAIR SEEDING AND MULCHING } \end{aligned}$	0.00	SY		\$0.00
0054 659E15000 INTER-SEEDING	0.00	SY	\$0.71000	\$0.00
0055 659E20000 COMMERCIAL FERTILIZER	0.00	TON		\$0.00
$\begin{aligned} & 0056659 \text { E31000 } \\ & \text { LIME } \end{aligned}$	0.00	ACRE	\$0.00000	\$0.00
0057 659E35000 WATER	0.00	MGAL	\$5.00000	\$0.00
0058 659E40000 MOWING	0.00	MSF	\$0.00000	\$0.00

Total for Group 0017: \$0.00
Group 0018: Underdrains

0059 C-MC-DRNG	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, DRAINAGE				$\$ 8.00000$

Total for Group 0018: \$86,800.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS $\$ 0.00000 \quad \$ 0.00$
$\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 12,950.00\end{array}$
MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
1.00 EACH
\$1,500.00000
\$1,500.00
MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: $\$ 14,450.00$
Group 0021: Culverts, Type A: 5' - 10'

0067 C-MC-DRNG	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, DRAINAGE	0.00	FT	$\$ 550.00000$	$\$ 0.00$
0476 C-MC-DRNG				
MAJOR COST DRIVERS, DRAINAGE				

Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"

```
0 4 7 7 ~ C - M C - D R N G ~ 0 . 0 0 ~ E A C H
 MAJOR COST DRIVERS, DRAINAGE
```

    Concrete - Headwalls/wingwalls
    Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'

0486 C-MC-DRNG			
MAJOR COST DRIVERS, DRAINAGE	1.00 LS	$\$ 0.00000$	$\$ 0.00$

0487 C-MC-DRNG 0.00 FT \$1,400.00000 \$0.00

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH \$1,500.00000
\$0.00 MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's

0076			
MAJOR COST DRIVERS, DRAINAGE	1.00	LS	$\$ 0.00000$

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
Group 0025: Closed Storm System

0077	C-MC-DRNG	1.00	LS	\$0.00000	\$0.00
MAJOR COST DRIVERS, DRAINAGE					
0489	$603 E 13400$	3,608.00	FT	\$75.00000	\$270,600.00
30" CONDUIT, TYPE B (Average size)					
0523	604E00800	14.00	EACH	\$1,500.00000	\$21,000.00
CATCH BASIN, NO. 3A					
0524	604E31500	1.00	EACH	\$3,000.00000	\$3,000.00
MANHOLE, NO. 3					
0525	604E36601	0.00	EACH	\$1,250.00000	\$0.00
PRECAST REINFORCED CONCRETE OUTLET, AS PER PLAN					
0526	Special	0.00	LS	\$6,400,000.00000	\$0.00
Pump Station (Storm)					
0527	Special	0.00	EACH	\$5,750.00000	\$0.00
Stormceptors					
0529	Special	0.00	LS	\$109,000.00000	\$0.00
Retention basin improvements					

Total for Group 0025: \$294,600.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
1.00 LS
$\$ 0.00000$
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes

0095	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00000$
0494 D-MC-PVMT	$59,563.00$	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			$\$ 4,050,284.00$
Includes 6" Agg Base and Subgrade Compaction			
$7: 33: 14 \mathrm{AM}$			

Group 0028: Mainline - Outside Shoulder

0100	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00000$
0495 D-MC-PVMT	$8,534.00$	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			$\$ 580,312.00$
Includes 6" Agg base and Subgrade Compaction			

Total for Group 0028: \$580,312.00
Group 0030: Mainline - Inside Shoulder

0115	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$	
0496	D-MC-PVMT	$11,410.00$	SY	$\$ 68.00000$

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$775,880.00
Group 0031: Ramps (including shoulders)

0122	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$	
0497	D-MC-PVMT	$2,376.00$	SY	$\$ 68.00000$

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0031: \$161,568.00

Group 0032: Non - Mainline Lanes

0132	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$	
0498	D-MC-PVMT	0.00	SY	$\$ 41.00000$

## Asphalt

Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$0.00

## Group 0041: Other Pavement Costs

0163 D-OC-PVMT	1.00 LS	$\$ 0.00000$	$\$ 0.00$
OTHER COSTS, PAVEMENT			

Total for Group 0041: \$0.00

Group 0042: Water Works			
$0164 \quad$ E-MC-WATR			
MAJOR COST DRIVERS, WATER LINE	0.00	LS	$\$ 0.00000$
$0165 \quad$ E-OC-WATR   OTHER COSTS, WATER LINE	0.00	LS	$\$ 0.00000$

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:33:14AM
Thursday, December 02, 2010

Group 0044: Lighting - Full Interchange

0173   MAJOR COST DRIVERS, LIGHTING	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0499	G-MC-LTNG	0.00	EACH	$\$ 469,000.00000$

Group 0045: Lighting - Partial Interchange

0288 G-MC-LTNG	0.00	LS	$\$ 0.00000$

Total for Group 0045: \$0.00

Group 0046: Lighting - Continuous Roadway				
0176 G-MC-LTNG   MAJOR COST DRIVERS, LIGHTING	1.00	LS	$\$ 0.00000$	$\$ 0.00$
050 GC-MTNG   Lighting - Continuous	$3,600.00$	FT	$\$ 35.00000$	$\$ 126,000.00$

Total for Group 0046: \$126,000.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \$0.00000

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
0178 H-OC-SURV 1.00 LS
OTHER COSTS, TRAFFIC SURVEILLANCE
\$246,872.97000
\$246,872.97
Total for Group 0048: \$246,872.97
Group 0049: Signs
0179 J-MC-TRAF $\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00$
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 0.6 Signs
\$250,000.00000
\$170,000.00
Total for Group 0049: \$170,000.00
Group 0050: Pavement Marking

0200	J-MC-TRAF	1.00	LS	\$0.00000	\$0.00
MAJOR COST DRIVERS, TRAFFIC CONTROL					
0502	644E00100	2.92	MILE	\$3,000.00000	\$8,760.00
EDGE LINE					
0503	644 E 00200	7.19	MILE	\$2,000.00000	\$14,380.00

[^1]Total for Group 0050: \$23,140.00
Group 0051: Other Traffic Control Costs
7:33:14AM
Thursday, December 02, 2010

Description
Supplemental Description

0208 J-OC-TRAF	1.00 LS	$\$ 0.00000$	$\$ 0.00$

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
0212 K-MC-SGNL
0.00 LS
\$175.00000
$\$ 0.00$
MAJOR COST DRIVERS, SIGNALS
Total for Group 0052: \$0.00
Group 0053: Other Traffic Signal Costs

0213 K-OC-SGNL	1.00 LS	$\$ 0.00000$	$\$ 0.00$

Total for Group 0053: \$0.00
Group 0054: Landscaping

0214 L-MC-LSCP	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, LANDSCAPING			$\$ 0.00$
0215 L-OC-LSCP	1.00	LS	$\$ 0.00000$

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing

$0216 \quad$ M-MC-WALL	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, RETAINING WALLS			
0504 M-MC-WALL	0.00	SF	$\$ 135.00000$

Total for Group 0055: \$0.00

## Group 0056: Other Retaining Wall Costs

0217 M-OC-WALL
1.00 LS
$\$ 0.00000$
$\$ 0.00$

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition

$\begin{array}{r} 0218 \\ \mathrm{M} \end{array}$	N-MC-DEMO OR COST DRI	$\begin{aligned} & 1.00 \\ & \text { TION } \end{aligned}$	LS	\$0.00000	\$0.00
0219	N-OC-DEMO	1.00	LS	\$0.00000	\$0.00
OTHER COSTS, BUILDING DEMOLITION					
0532	202E56101	0.00	EACH	\$30,000.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0533	202E56101	0.00	EACH	\$15,000.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0534	202E56101	1.00	EACH	\$12,000.00000	\$12,000.00
BUILDING DEMOLISHED, AS PER PLAN					
0535	202E56101	4.00	EACH	\$7,500.00000	\$30,000.00
BUILDING DEMOLISHED, AS PER PLAN					
Small Residential					
0536	202E98100	0.00	EACH	\$8,500.00000	\$0.00


Group 0058: Noise Barrier				
0220 P-MC-NSBR   MAJOR COST DRIVERS, NOISE BARRIER	1.00	LS	\$0.00000	\$0.00
Noise Barrier				
			Total	
Group 0059: Other Noise Barrier Costs				
0221 P-OC-NSBR   OTHER COSTS, NOISE BARRIER	1.00	LS	\$0.00000	\$0.00
0368 P-MC-NSBR   MAJOR COST DRIVERS, NOISE BARRIER	0.00	LS	\$0.00000	\$0.00

Total for Group 0059: \$0.00
$\left.\begin{array}{lllll}\text { Group 0060: New Structures } \\ \text { 0222 R-MC-STRC } \\ \text { MAJOR COST DRIVERS, STRUCTURES }\end{array}\right)$
Tier 3 Structures 50' to $75^{\prime}$ Height $\quad$ Total for Group 0060: \$0.00

Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
$\$ 45.00000$
$\$ 0.00$
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs

0224 R-OC-STRC
0.00 LS
$\$ 0.00000$
$\$ 0.00$
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: $\$ 0.00$
Group 0063: Temporary Road and Pavement Costs

0225 S-MC-MNTC	1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC	

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$
$\$ 0.00$
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC $\quad 1.00$ LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
$\$ 0.00000$
$\$ 0.00$

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
$\$ 0.00000$
$\$ 0.00$
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS $\$ 0.00000$
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
$\begin{array}{lrlrl}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.68 & \text { MILE } & \$ 500,000.00000\end{array}$
$\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 0.68 & \text { MILE } & \$ 500,000.00000\end{array}$
Total for Group 0070: \$340,000.00
Group 0071: Wetland Construction

0234 T-MC-WTLD	0.00 LS	$\$ 0.00000$
MAJOR COST DRIVERS, WETLAND CONSTRUCTION		$\$ 0.00$
0360 T-MC-WTLD	0.00 LS	$\$ 0.00000$

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:33:14AM
Thursday, December 02, 2010

Line \# Item Number

## Description

Unit Price

0235	0.00		LS	$\$ 0.00000$
MAJOR COST DRIVERS, MISCELLANEOUS COSTS	$\$ 0.00$			
0236 U-OC-MISC	0.00	LS	$\$ 0.00000$	$\$ 0.00$
OTHER COSTS, MISCELLANEOUS COSTS				$\$ 000$

0238 623E10000 $\quad 1.00 \mathrm{LS} \quad \$ 124,670.85000 \quad \$ 124,670.85$
CONSTRUCTION LAYOUT STAKES
0.5\%
0239 614E11000
1.00 LS \$498,683.39000
\$498,683.39
MAINTAINING TRAFFIC
2\%

0240 619E16020	32.00	MNTH	$\$ 2,500.00000$	$\$ 80,000.00$
FIELD OFFICE, TYPE C	1.00	LS	$\$ 800,000.00000$	
0242 624E10000				$\$ 800,000.00$
MOBILIZATION	1.00	LS	$\$ 124,670.85000$	$\$ 124,670.85$
0511 103E05000				
PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND				
$0.5 \%$	0.00	$\$ 0.00000$	$\$ 0.00$	
0518	0.00	$\$ 0.00000$	$\$ 0.00$	
0519	0.00	$\$ 0.00000$	$\$ 0.00$	
0520	0.00	$\$ 0.00000$	$\$ 0.00$	

Total for Group 0072: \$1,628,025.09

## Group 0073: Design Contingency Costs

0243 V-MC-CNTG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, CONTINGENCY COSTS		$\$ 0.00$	
$0244 \quad$ V-OC-CNTG	1.00	LS	$\$ 6,640,548.64000$
OTHER COSTS, CONTINGENCY COSTS			$\$ 6,640,548.64$
$25 \%$			

Total for Group 0073: \$6,640,548.64

## Group 0074: Inflation Contingency

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
$\$ 0.00000$
Total for Group 0074: \$0.00
$\qquad$ County $\qquad$ Route $\qquad$ Section

Macro View													ibutes		
Acquisition	Unit (SF) or (Acreage)	X	Cost/Unit (\$\$/SF)   (\$\$/Acre)	Subtotal Land Value	+	$\begin{gathered} \hline \text { Structure } \\ \text { Values } \\ \text { (if Taken) } \\ \hline \end{gathered}$	+	Damages   (Loss in Value   to the Residue)	Subtotal      Damages	=	Total Non Labor Acquisition Costs	Parcel Count	Total Takes	Partial   Takes	No. of Structures Impacted
-Residential	3.37	$x$	\$96,480.75	\$325,140	+	2085000	+	N/A	\$2,085,000.00	=	\$2,410,140.13	8	4	4	5
-Commercial	0.41	x	\$4,950.50	\$2,030	+	0	+	N/A	\$0.00	=	\$2,029.71	1	0	1	0
-Industrial	0	x	\$0.00	\$0	+	0	+	N/A	\$0.00	=	\$0.00	0	0	0	0
-Agricultural	0	x	\$0.00	\$0	+	0	+	N/A	\$0.00	=	\$0.00	0	0	0	0
Relocation	Unit (Displacement)	X	*RHP/	RSP	+	Move Cost	+	Reestablis	shment	$=$	Total Non Labor RAP Costs	Estim	amount of tim all RAP parc	necessary   = (months)	relocate $24$
-Residential Owner Occupant Tenant	$\begin{gathered} 5 \\ 18 \end{gathered}$	x $\begin{aligned} & \text { x } \\ & \text { x }\end{aligned}$	\$34, \$10,	,000	+ + +	$\begin{aligned} & \$ 6,000 \\ & \$ 1,750 \end{aligned}$				$=$	$\begin{aligned} & \$ 200,000 \\ & \$ 211,500 \end{aligned}$	Estima ac	number of yea   isition begins =	until proje	wide R/W   . 5
-Commerical/Farm/NPO Owner Tenant	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$				x x x	$\begin{aligned} & \$ 15,000 \\ & \$ 15,000 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & + \\ & + \end{aligned}\right.$	\$10,0 $\$ 10,0$		$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{aligned} & \$ 0 \\ & \$ 0 \end{aligned}$				
-Personal Property	0	)			x	\$1,000				$=$	\$0				
$\{[($ Total Cost of Acquisition Cost $) \times 0.90] \times 0.025\}+\{[$ (Total of Acquisition Cost $) \times 0.15] \times 1.20\}+\{[($ Total of Acquisition Cost) $\times 0.10] \times 1.50\}=$ Contingency							Contingency(Incidentals, Admin. Review \& Appropriation)				850289.866	*RHP - Replacement Housing Payment   *RSP - Rent Supplemental Payment   *NPO - Non-Profit Organization			
							Total Non Labor R/W Costs				\$3,673,959.70				

## Instruction for Acquisition \& Relocation Cos

 Estimates| Labor (External) | Unit (Parcels) | x | Unit Price | = | Total Cost |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Titles | 9 | x | \$400 | = | \$3,600 |
| Appraisal -Simple -Detailed | $\begin{aligned} & 4 \\ & 5 \end{aligned}$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{gathered} \$ 750 \\ \$ 4,500 \end{gathered}$ | $=$ | $\begin{aligned} & \$ 3,000 \\ & \$ 22,500 \end{aligned}$ |
| Appraisal Review -Simple -Detailed | $5$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{gathered} \$ 500 \\ \$ 2,000 \end{gathered}$ | $=$ <br> $=$ | $\begin{gathered} \$ 2,000 \\ \$ 10,000 \end{gathered}$ |
| Negotiations | 9 | x | \$1,100 | = | \$9,900 |
| Relocations <br> -Personal Property <br> -Residential <br> -Commercial/Farm/*NPO | $\begin{gathered} 0 \\ 23 \\ 0 \end{gathered}$ | $\begin{aligned} & x \\ & x \\ & x \end{aligned}$ | $\begin{aligned} & \$ 1,500 \\ & \$ 5,200 \\ & \$ 5,600 \end{aligned}$ | $=$ $=$ $=$ | $\begin{gathered} \$ 0 \\ \$ 119,600 \\ \$ 0 \end{gathered}$ |
| Closings | 23 | x | \$400 | $=$ | \$9,200 |
| Project Management | 23 | x | \$550 | $=$ | \$12,650 |
| Asbestos Testing \& Abatement |  | x |  | = |  |
|  | Total Labor Costs |  |  |  | \$192,450 |
| *NPO = Non-Profit Organization |  |  |  |  |  |



Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Uajor Projects) and requires some knowledge of the mpots of troject on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates hat involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The person making the cost estimate may adjust the igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternative, the step in the PDP process and the alternative, the step in the PDP process and

Total Labor Costs	$\$ 192,450.00$
Total Non Labor R/W Costs	$\$ 3,673,959.70$
Inflation Adjustments	$\$ 317,045.60$
Total R/W Costs	$\$ 4,183,455.30$

```
Cost/Unit were generated from auditors tax card data
```


# Estimate Alt E KY cont 7 

Estimated Cost: \$273,619,105.99
Contingency: 57.60\%
Estimated Total: \$431,223,711.04

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal

0001	A-MC-RDWY	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY				$\$ 0.00$
0343	$202 E 23000$	$129,338.00$	SY	$\$ 8.00000$

PAVEMENT REMOVED

Group 0002: Excavation - Rock

| 0003 A-MC-RDWY |
| :--- | :--- | :--- | :--- | :--- |
| MAJOR COST DRIVERS, ROADWAY |$\quad 80,360.00 \mathrm{CY} \quad \$ 30.00000 \quad \$ 2,410,800.00$

Total for Group 0002: \$2,410,800.00
Group 0003: Excavation - Soil

0004 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0344 203E10000   EXCAVATION	$120,540.00$	CY	$\$ 8.00000$	$\$ 964,320.00$

Total for Group 0003: \$964,320.00
Group 0004: Excavation - Hazardous

0006 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00 LS	$\$ 0.00000$	Total for Group 0004: \$0.00

Group 0005: Fill - Embankment (includes wasting excess excavation)

0007	A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$	
0345	$203 E 20000$	$268,200.00$	CY	$\$ 6.00000$

Total for Group 0005: \$1,609,200.00
Group 0006: Fill - Lime Modified Soil

0010 A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY	0.00	CY	$\$ 7.00000$
0346 205E10050   LIME STABILIZED EMBANKMENT	0.00		
O347 205E10300   LIME			$\$ 5.00000$

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow

0011 A-MC-RDWY MAJOR COST DRIVERS, ROADWAY

67,300.00 CY
$\$ 8.00000$
\$538,400.00
Total for Group 0007: \$538,400.00

Group 0008: Concrete Barrier

0012 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY			$\$ 676,500.00$	
0465 622E10060	$6,150.00$	FT	$\$ 110.00000$	
$7: 34: 38$ AM				Page 2 of 12

Total for Group 0008: $\$ 676,500.00$
Group 0009: Subgrade Treatment - Lime

0014 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY				

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement
0016 A-MC-RDWY

| $162,575.00 ~ S Y$ |
| :--- |$\$ 2.50000$

Total for Group 0010: $\$ 406,437.50$
Group 0011: Subgrade Treatment - Undercut \& Backfill

0017 A-MC-RDWY	1.00 LS	$\$ 0.00000$	$\$ 0.00$

Total for Group 0011: \$0.00

Group 0012: Other Roadway Costs				
0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency	0.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0020 \text { 201E11000 } \\ & \text { CLEARING AND GRUBBING } \end{aligned}$	0.00	LS	\$856,500.00000	\$0.00
$\begin{aligned} & 0021 \text { 201E21800 } \\ & \text { TREE REMOVED, } 18 \text { " SIZE } \end{aligned}$	0.00	EACH	\$250.00000	\$0.00
$\begin{aligned} & 0022 \text { 201E23000 } \\ & \text { TREE REMOVED, 30" SIZE } \end{aligned}$	0.00	EACH	\$405.00000	\$0.00
$\begin{aligned} & 0023 \text { 201E24800 } \\ & \text { TREE REMOVED, 48" SIZE } \end{aligned}$	0.00	EACH	\$772.00000	\$0.00
$\begin{aligned} & 0026 \text { 202E11000 } \\ & \text { STRUCTURE REMOVED } \end{aligned}$	0.00	LS	\$9,310.13000	\$0.00
$\begin{aligned} & 0028 \text { 202E35200 } \\ & \text { PIPE REMOVED, OVER } 24 " \end{aligned}$	0.00	FT		\$0.00
$\begin{aligned} & 0029 \text { 202E38000 } \\ & \text { GUARDRAIL REMOVED } \end{aligned}$	0.00	FT		\$0.00
$\begin{aligned} & 0030 \text { 202E42206 } \\ & \text { ANCHOR ASSEMBLY REMOVED } \end{aligned}$	0.00	EACH		\$0.00
$\begin{aligned} & 0031 \text { 202E58000 } \\ & \text { MANHOLE REMOVED } \end{aligned}$	0.00	EACH		\$0.00
$\begin{aligned} & 0032 \text { 202E58100 } \\ & \text { CATCH BASIN REMOVED } \end{aligned}$	0.00	EACH		\$0.00
$\begin{aligned} & 0033 \text { 202E75000 } \\ & \text { FENCE REMOVED } \end{aligned}$	0.00	FT		\$0.00
0034 204E45000	0.00	HOUR	\$126.59000	\$0.00

Line \# Item Number

## Description

 Supplemental DescriptionPROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000
Quantity Units
Unit Price
Extension SPECIAL - PRESSURE RELIEF JOINT, TYPE A GUARDRAIL, TYPE 5
0038 606E22000 0.00 EACH \$0.00 ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 0.00 EACH ANCHOR ASSEMBLY, TYPE T
$0041606 \mathrm{E} 35000 \quad 0.00 \mathrm{EACH} \quad \$ 0.00$ BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 $0.00 \mathrm{EACH} \quad \$ 0.00$ IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
$\$ 0.00$
AGGREGATE BASE
For Fencing
0424 601E32100 0.00 CY $\quad \$ 0.00$ ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
$\$ 0.00$
GATE, TYPE 47
For Fencing
0426 625E32000
0.00 EACH
$\$ 0.00$ GROUND ROD For Fencing
0466
0.00
$\$ 0.00000$
$\$ 0.00$
Total for Group 0012: $\$ 58,800.00$
Group 0014: Seeding \& Mulching / Sodding

0045	B-MC-ERCO	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, EROSION CONTROL			$\$ 0.00$	
0467	$659 E 10000$	$35,254.00$	SY	$\$ 1.00000$
SEEDING AND MULCHING	0.00	SY	$\$ 15.00000$	$\$ 35,254.00$
0531	$660 E 25000$			$\$ 0.00$

Total for Group 0014: \$35,254.00

## Group 0015: Rock Channel Protection



## Description Supplemental Description

MAJOR COST DRIVERS, EROSION CONTROL

$0470 \quad 832 E 10000$	1.00	LS	$\$ 50,000.00000$	$\$ 50,000.00$
STORM WATER POLLUTION PREVENTION PLAN		$\$ 1.00000$	$\$ 170,000.00$	

Total for Group 0016: \$220,000.00

Group 0017: Other Erosion Control Costs				
0049 670E00700   DITCH EROSION PROTECTION	0.00	SY		\$0.00
	1.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0051 \text { 659E00100 } \\ & \text { SOIL ANALYSIS TEST } \end{aligned}$	0.00	EACH	\$0.00000	\$0.00
0052 659E00300 TOPSOIL	0.00	CY		\$0.00
$\begin{aligned} & 0053 \text { 659E14000 } \\ & \text { REPAIR SEEDING AND MULCHING } \end{aligned}$	0.00	SY		\$0.00
0054 659E15000 INTER-SEEDING	0.00	SY	\$0.71000	\$0.00
0055 659E20000 COMMERCIAL FERTILIZER	0.00	TON		\$0.00
$\begin{aligned} & 0056659 \text { E31000 } \\ & \text { LIME } \end{aligned}$	0.00	ACRE	\$0.00000	\$0.00
$\begin{aligned} & 0057 \text { 659E35000 } \\ & \text { WATER } \end{aligned}$	0.00	MGAL	\$5.00000	\$0.00
0058 659E40000 MOWING	0.00	MSF	\$0.00000	\$0.00

Total for Group 0017: \$0.00
Group 0018: Underdrains

0059 C-MC-DRNG	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, DRAINAGE				$\$ 8.00000$

Total for Group 0018: \$90,360.00
Group 0019: Culverts - Type A: < 5'

0474 C-MC-DRNG	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, DRAINAGE			
0480 C-MC-DRNG   MAJOR COST DRIVERS, DRAINAGE	0.00	FT	$\$ 350.00000$
Pipe Structures - Reinforced Concrete Pipe up to 60 "		$\$ 0.00$	
0481 C-MC-DRNG	0.00	EACH	$\$ 1,500.00000$

MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'

0067	C-MC-DRNG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, DRAINAGE			$\$ 0.00$	
0476 C-MC-DRNG	0.00	FT	$\$ 550.00000$	$\$ 0.00$
MAJOR COST DRIVERS, DRAINAGE				

Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"

```
0477 C-MC-DRNG 0.00 EACH
 MAJOR COST DRIVERS, DRAINAGE
 Concrete - Headwalls/wingwalls
```

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'

0486 C-MC-DRNG			
MAJOR COST DRIVERS, DRAINAGE	1.00 LS	$\$ 0.00000$	$\$ 0.00$

0487 C-MC-DRNG $\quad 0.00$ FT $\$ 1,400.00000 \quad \$ 0.00$

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH

MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's

0076			
MAJOR COST DRIVERS, DRAINAGE	1.00	LS	$\$ 0.00000$

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00

## Group 0025: Closed Storm System

0077	C-MC-DRNG	1.00	LS	\$0.00000	\$0.00
MAJOR COST DRIVERS, DRAINAGE					
0489	603E13400	23,930.00	FT	\$75.00000	\$1,794,750.00
30" CONDUIT, TYPE B (Average size)					
0523	604E00800	150.00	EACH	\$1,500.00000	\$225,000.00
CATCH BASIN, NO. 3A					
0524	604E31500	35.00	EACH	\$3,000.00000	\$105,000.00
MANHOLE, NO. 3					
0525	604E36601	1.00	EACH	\$1,250.00000	\$1,250.00
PRECAST REINFORCED CONCRETE OUTLET, AS PER PLAN					
0526	Special	1.00	LS	\$6,400,000.00000	\$6,400,000.00
Pump Station (Storm)					
0527	Special	6.00	EACH	\$5,750.00000	\$34,500.00
Stormceptors					
0529	Special	1.00	LS	\$109,000.00000	\$109,000.00
Retention basin improvements					

Total for Group 0025: \$8,669,500.00

## Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
1.00 LS
$\$ 0.00000$
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes

0095	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			
0494 D-MC-PVMT	$61,502.00$	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			$\$ 4,182,136.00$
Includes 6" Agg Base and Subgrade Compaction			
$7: 34: 38 A M$			

Group 0028: Mainline - Outside Shoulder

0100	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00000$
0495	D-MC-PVMT	$13,630.00$	SY
13" Reinforced Concrete Pavement		$\$ 68.00000$	$\$ 0.00$
Includes 6" Agg base and Subgrade Compaction			

Total for Group 0028: $\$ 926,840.00$
Group 0030: Mainline - Inside Shoulder

0115	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00000$
0496	D-MC-PVMT	$15,649.00$	SY
13" Reinforced Concrete Pavement		$\$ 68.00000$	$\$ 1,064,132.00$
Includes 6" Agg base and Subgrade Compaction			

Total for Group 0030: \$1,064,132.00
Group 0031: Ramps (including shoulders)

0122	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT				$\$ 0.00$
0497	D-MC-PVMT	$27,291.00$	SY	$\$ 68.00000$

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0031: \$1,855,788.00
Group 0032: Non - Mainline Lanes

0132	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT				$\$ 0.00$
0498	D-MC-PVMT	$44,394.00$	SY	$\$ 41.00000$

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction

Total for Group 0032: \$1,820,154.00

## Group 0041: Other Pavement Costs

0163 D-OC-PVMT	1.00 LS	$\$ 0.00000$	$\$ 0.00$
OTHER COSTS, PAVEMENT			

Total for Group 0041: \$0.00

Group 0042: Water Works			
$0164 \quad$ E-MC-WATR			
MAJOR COST DRIVERS, WATER LINE	0.00	LS	$\$ 0.00000$
$0165 \quad$ E-OC-WATR   OTHER COSTS, WATER LINE	0.00	LS	$\$ 0.00000$

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:34:38AM
Thursday, December 02, 2010

Total for Group 0043: \$0.00
Group 0044: Lighting - Full Interchange

0173 G-MC-LTNG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, LIGHTING			$\$ 0.00$
0499 G-MC-LTNG	2.00	EACH	$\$ 469,000.00000$
MAJOR COST DRIVERS, LIGHTING			Total for Group 0044: $\$ 938,000.00$

Group 0045: Lighting - Partial Interchange

0288 G-MC-LTNG	0.00	LS	$\$ 0.00000$

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG 6,195.00 FT
Lighting - Continuous
$\$ 0.00000$
$\$ 0.00$
$\$ 35.00000$
\$216,825.00
Total for Group 0046: \$216,825.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS $\$ 0.00000 \quad \$ 0.00$

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
0178 H-OC-SURV $1.00 \mathrm{LS} \quad \$ 2,083,872.78000 \quad \$ 2,083,872.78$
OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$2,083,872.78
Group 0049: Signs
0179 J-MC-TRAF $\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00$
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 1.1 Signs
$\$ 250,000.00000$
\$292,500.00
Total for Group 0049: \$292,500.00
Group 0050: Pavement Marking

0200	1.00	LS		$\$ 0.00000$
MAJOR COST DRIVERS, TRAFFIC CONTROL		$\$ 0.00$		
0502	$644 E 00100$	21.70	MILE	$\$ 3,000.00000$

LANE LINE
Total for Group 0050: \$90,240.00
Group 0051: Other Traffic Control Costs
7:34:38AM
Thursday, December 02, 2010

Description Supplemental Description

0208 J-OC-TRAF	1.00 LS	$\$ 0.00000$	$\$ 0.00$
OTHER COSTS, TRAFFIC CONTROL			

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
7.00 LS

MAJOR COST DRIVERS, SIGNALS
\$175,000.00000
\$1,225,000.00
Total for Group 0052: \$1,225,000.00

Group 0053: Other Traffic Signal Costs

0213 K-OC-SGNL	1.00 LS	$\$ 0.00000$	$\$ 0.00$

Total for Group 0053: \$0.00
Group 0054: Landscaping

0214	L-MC-LSCP	1.00	LS
MAJOR COST DRIVERS, LANDSCAPING			$\$ 0.00000$
$0215 \quad$ L-OC-LSCP	1.00	LS	$\$ 0.00$
OTHER COSTS, LANDSCAPING			$\$ 0.00$

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing

0216 M-MC-WALL	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, RETAINING WALLS			$\$ 0.00$
0504 M-MC-WALL     Retaining Walls $124,855.00$ SF	$\$ 135.00000$	$\$ 16,855,425.00$	

Total for Group 0055: \$16,855,425.00

## Group 0056: Other Retaining Wall Costs

0217 M-OC-WALL
1.00 LS
\$0.00000
\$0.00

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition

0218 N-MC-DEMO   MAJOR COST DRIVERS, BUILDING DE	$\begin{array}{r} 1.00 \\ \text { LITION } \end{array}$	LS	\$0.00000	\$0.00
$\begin{aligned} & 0219 \text { N-OC-DEMO } \\ & \text { OTHER COSTS, BUILDING DEMOLITION } \end{aligned}$	1.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0532 \text { 202E98100 } \\ & \text { REMOVAL MISC.: } \\ & \text { Radio Tower } \end{aligned}$	1.00	EACH	\$8,500.00000	\$8,500.00
0533 202E56101   BUILDING DEMOLISHED, AS PER PLAN   Small Residential	59.00	EACH	\$7,500.00000	\$442,500.00
0534 202E56101   BUILDING DEMOLISHED, AS PER PLAN   Small Commercial	7.00	EACH	\$15,000.00000	\$105,000.00
0535 202E56101   BUILDING DEMOLISHED, AS PER PLAN   Large Commercial	0.00	EACH	\$30,000.00000	\$0.00
0536 202E56101	4.00	EACH	\$12,000.00000	\$48,000.00

Total for Group 0057: \$604,000.00

## Group 0058: Noise Barrier

0220 P-MC-NSBR
1.00 LS
$\$ 0.00000$
$\$ 0.00$
MAJOR COST DRIVERS, NOISE BARRIER
0505 P-MC-NSBR
47,992.00 SF
Noise Barrier

Total for Group 0058: \$1,199,800.00

Group 0059: Other Noise Barrier Costs				
0221 P-OC-NSBR	1.00	LS	$\$ 0.00000$	
OTHER COSTS, NOISE BARRIER	0.00	LS	$\$ 0.00000$	$\$ 0.00$
OB68 P-MC-NSBR   MAJOR COST DRIVERS, NOISE BARRIER			$\$ 0.00$	

Total for Group 0059: \$0.00


Total for Group 0060: \$159,816,262.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
$\$ 45.00000$
$\$ 0.00$
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
$\$ 0.00000$
$\$ 0.00$
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: $\$ 0.00$
Group 0063: Temporary Road and Pavement Costs

0225 S-MC-MNTC	$1.00 \quad$ LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC	

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC $\quad 1.00$ LS \$0.00000
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Group 0065: Impact Attenuators

0227	S-MC-MNTC	1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC	$\$ 0.00000$	$\$ 0.00$

Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC $\quad 1.00$ LS \$0.00000
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
$\$ 0.00000$
$\$ 0.00$

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
$\$ 0.00000$
\$0.00
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS $\$ 0.00$
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
$\begin{array}{lllll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \\ 0512 & \text { S-OC-MNTC } & 1.17 & \text { MILE } & \$ 500,000.00000\end{array}$
$\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 1.17 & \text { MILE } & \$ 500,000.00000\end{array}$

Total for Group 0070: \$585,000.00
Group 0071: Wetland Construction

0234	T-MC-WTLD	0.00	LS	\$0.00000	\$0.00
MAJOR COST DRIVERS, WETLAND CONSTRUCTION					
0360	T-MC-WTLD	0.00	LS	\$0.00000	\$0.00
	OR COST DR	RUCT			

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:34:38AM
Thursday, December 02, 2010

## Description Supplemental Description



Total for Group 0072: \$8,424,134.51

## Group 0073: Design Contingency Costs

0243 V-MC-CNTG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, CONTINGENCY COSTS		$\$ 0.00$	
0244 V-OC-CNTG	1.00	LS	$\$ 54,723,821.20000$

Total for Group 0073: \$54,723,821.20
Group 0074: Inflation Contingency

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
$\$ 0.00000$
Total for Group 0074: \$0.00
$\qquad$ County $\qquad$ Route $\qquad$


Instruction for Acquisition \& Relocation Cost Estimates

Labor (External)	Unit (Parcels)	x	Unit Price	=	Total Cost
Titles	117	x	\$400	=	\$46,800
Appraisal -Simple -Detailed	$\begin{gathered} 6 \\ 111 \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{gathered} \$ 750 \\ \$ 4,500 \end{gathered}$	$=$ $=$	$\begin{gathered} \$ 4,500 \\ \$ 499,500 \end{gathered}$
Appraisal Review -Simple -Detailed	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{gathered} \$ 500 \\ \$ 2,000 \end{gathered}$	$=$	$\begin{aligned} & \$ 2,000 \\ & \$ 10,000 \end{aligned}$
Negotiations	117	x	\$1,100	=	\$128,700
Relocations   -Personal Property   -Residential   -Commercial/Farm/*NPO	$\begin{gathered} 0 \\ 84 \\ 64 \end{gathered}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \$ 1,500 \\ & \$ 5,200 \\ & \$ 5,600 \end{aligned}$	$=$	$\$ 0$ $\$ 436,800$ \$33,600
Closings	117	x	\$400	$=$	\$46,800
Project Management	117	x	\$550	$=$	\$64,350
Asbestos Testing \& Abatement		x		=	
	Total Labor Costs				\$1,273,050
*NPO = Non-Profit Organization					



Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This uaaly occurs at Step 4 for Minor projects (Step 6 on pact of project on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates hat involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and omplexity of the project and the talent necessary to acquire the right of way in a timely manner. The acquire the right of way in a timely manner. The
person making the cost estimate may adjust the igures given for the particular project being estimated to reflect local labor costs. It is critical that the
estimate be labeled to reflect the alignment alternative, the step in the PDP process and the
person(s) performing the estimate.

## Comments

ost/Unit were generated from auditors tax card data Changed "Agriculture" category to "Other" to include Goebel Park and other properties that do not fit the main categories.
P.D.P. R/W Cost Estimator

# Estimate Alt E KY cont 8 

Estimated Cost: \$40,553,981.01

Contingency: 65.50\%
Estimated Total: \$67,116,838.57

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Description Supplemental Description

Group 0001: Pavement Removal

0001 A-MC-RDWY	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			
$0343 \quad$ 202E23000	0.00	SY	$\$ 8.00000$

Total for Group 0001: \$0.00
Group 0002: Excavation - Rock

0003 A-MC-RDWY	0.00	CY	$\$ 30.00000$

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil

0004 A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$
0344 203E10000   EXCAVATION	0.00	CY	$\$ 8.00000$

Total for Group 0003: \$0.00
Group 0004: Excavation - Hazardous
0006 A-MC-RDWY
1.00 LS
$\$ 0.00000$
$\$ 0.00$
Total for Group 0004: \$0.00
Group 0005: Fill - Embankment (includes wasting excess excavation)

0007	A-MC-RDWY	1.00	LS
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00000$
0345	$03 E 20000$	0.00	CY

Total for Group 0005: \$0.00
Group 0006: Fill - Lime Modified Soil

0010 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY	0.00	CY	$\$ 7.00000$	$\$ 0.00$
0346 205E10050   LIME STABILIZED EMBANKMENT	0.00			$\$ 0.00$
TON   LIME			$\$ 5.00000$	

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY $0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 00$ MAJOR COST DRIVERS, ROADWAY

Total for Group 0007: \$0.00
Group 0008: Concrete Barrier

0012 A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$
0465 622E10060	0.00	FT	$\$ 110.00000$
$7: 35: 50$ AM			
Thursday, December 02, 2010			$\$ 0.00$

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00
Group 0009: Subgrade Treatment - Lime

0014 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY				

Total for Group 0009: \$0.00

Group 0010: Subgrade Treatment - Cement			
0016 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	0.00 SY	\$2.50000	\$0
			Total for Group 0010: \$0.00

Group 0011: Subgrade Treatment - Undercut \& Backfill
0017 A-MC-RDWY $1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00$

MAJOR COST DRIVERS, ROADWAY
Total for Group 0011: \$0.00

Group 0012: Other Roadway Costs				
0019 A-OC-RDWY   OTHER COSTS, ROADWAY   Contingency	0.00	LS	\$0.00000	\$0.00
$\begin{aligned} & 0020 \text { 201E11000 } \\ & \text { CLEARING AND GRUBBING } \end{aligned}$	0.00	LS	\$856,500.00000	\$0.00
$\begin{aligned} & 0021 \text { 201E21800 } \\ & \text { TREE REMOVED, } 18 " \text { SIZE } \end{aligned}$	0.00	EACH	\$250.00000	\$0.00
$\begin{aligned} & 0022201 E 23000 \\ & \text { TREE REMOVED, } 30 \text { " SIZE } \end{aligned}$	0.00	EACH	\$405.00000	\$0.00
$\begin{aligned} & 0023 \text { 201E24800 } \\ & \text { TREE REMOVED, } 48 \text { " SIZE } \end{aligned}$	0.00	EACH	\$772.00000	\$0.00
$\begin{aligned} & 0026 \text { 202E11000 } \\ & \text { STRUCTURE REMOVED } \end{aligned}$	0.00	LS	\$9,310.13000	\$0.00
0034 204E45000 PROOF ROLLING	0.00	HOUR	\$126.59000	\$0.00
$\begin{aligned} & 0035 \text { 204E10000 } \\ & \text { SUBGRADE COMPACTION } \end{aligned}$	0.00	SY	\$0.81000	\$0.00
$\begin{aligned} & 0037 \text { 606E13000 } \\ & \text { GUARDRAIL, TYPE } 5 \end{aligned}$	0.00	FT	\$14.00000	\$0.00
0466	0.00		\$0.00000	\$0.00
Total for Group 0012: \$0.00				

Group 0014: Seeding \& Mulching / Sodding
0045 B-MC-ERCO 1.00 LS
$\$ 0.00000$
$\$ 0.00$
MAJOR COST DRIVERS, EROSION CONTROL
7:35:50AM
Thursday, December 02, 2010

Description Supplemental Description

0467	659E10000	0.00	SY	$\$ 1.00000$
SEEDING AND MULCHING				
0531	660E25000	0.00	SY	$\$ 15.00000$

Total for Group 0014: \$0.00
Group 0015: Rock Channel Protection

0047	B-MC-ERCO	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, EROSION CONTROL			$\$ 0.00$	
0469	$601 E 32000$	0.00	CY	$\$ 75.00000$

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832


Total for Group 0016: $\$ 22,000.00$
Group 0018: Underdrains

0059 C-MC-DRNG	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, DRAINAGE				
0062 605E05100	0.00	FT	$\$ 8.00000$	$\$ 0.00$
$4 "$ SHALLOW PIPE UNDERDRAINS				

Total for Group 0018: \$0.00


MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00


Total for Group 0021: \$0.00

## Description Supplemental Description

Group 0022: Culverts, Type A: 10' - 20'

0486   MAJOR COST DRIVERS, DRAINAGE	1.00	LS	$\$ 0.00000$	$\$ 0.00$
0487	C-MC-DRNG	0.00	FT	$\$ 1,400.00000$

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's

0076	C-MC-DRNG	1.00 LS	$\$ 0.00000$

## MAJOR COST DRIVERS, DRAINAGE

Total for Group 0024: \$0.00


Total for Group 0025: \$0.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
1.00 LS
$\$ 0.00000$
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes

0095	D-MC-PVMT	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00$	
0494	D-MC-PVMT	0.00	SY	$\$ 68.00000$

Total for Group 0027: \$0.00
Group 0028: Mainline - Outside Shoulder

0100 D-MC-PVMT	1.00	LS	$\$ 0.00000$

Line \# Item Number Quantity Description

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Supplemental Description
0495 D-MC-PVMT 0.00 SY

Unit Price
Extension

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder

0115	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT		$\$ 0.00000$	
0496 D-MC-PVMT	0.00	SY	$\$ 59.00000$
13" Reinforced Concrete Pavement			$\$ 0.00$
Includes 6" Agg base and Subgrade Compaction		$\$ 000$	

Total for Group 0030: $\$ 0.00$
Group 0031: Ramps (including shoulders)

0122	D-MC-PVMT	1.00	LS
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00000$
0497 D-MC-PVMT	0.00	SY	$\$ 68.00000$
13" Reinforced Concrete Pavement			$\$ 0.00$
Includes 6" Agg base and Subgrade Compaction			$\$ 000$

Group 0032: Non - Mainline Lanes

0132	1.00	LS	
MAJOR COST DRIVERS, PAVEMENT			$\$ 0.00000$
0498 D-MC-PVMT	0.00	SY	$\$ 40.00000$
Asphalt			
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction	$\$ 0.00$		

Total for Group 0032: \$0.00

## Group 0041: Other Pavement Costs

0163 D-OC-PVMT	1.00 LS	$\$ 0.00000$	$\$ 0.00$

OTHER COSTS, PAVEMENT
Total for Group 0041: \$0.00
Group 0042: Water Works

0164 E-MC-WATR   MAJOR COST DRIVERS, WATER LINE	0.00	LS	$\$ 0.00000$
0165	E-OC-WATR	0.00	LS

## OTHER COSTS, WATER LINE <br> Total for Group 0042: \$0.00

Group 0043: Sanitary Line

0170   MAJOR COST DRIVERS, SANITARY SEWER	0.00	LS

Total for Group 0044: \$0.00
Group 0045: Lighting - Partial Interchange

```
0 2 8 8 \text { G-MC-LTNG 0.00 LS}
\(\$ 0.00\)
```

MAJOR COST DRIVERS, LIGHTING

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway

0176 G-MC-LTNG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, LIGHTING   0500 G-MC-LTNG   Lighting - Continuous $\mathrm{3,492.00}$	FT	$\$ 35.00000$	$\$ 122,220.00$

Total for Group 0046: \$122,220.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG
0.00 LS
$\$ 0.00000$
\$0.00
Total for Group 0047: \$0.00

Group 0048: Traffic Surveillance
0178 H-OC-SURV 1.00 LS $\$ 309,731.25000 \quad \$ 309,731.25$

OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$309,731.25
Group 0049: Signs
0179 J-MC-TRAF
1.00 LS
$\$ 0.00000$
$\$ 0.00$
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 0.66 MILE
\$250,000.00000
\$165,000.00
Signs
Total for Group 0049: \$165,000.00
Group 0050: Pavement Marking

0200	J-MC-TRAF	1.00	LS	\$0.00000	\$0.00
MAJOR COST DRIVERS, TRAFFIC CONTROL					
EDGE LINE					
LANE LINE					
				Total for G	0.00
Group 0051: Other Traffic Control Costs					
$0208$	J-OC-TRAF   HER COSTS,	1.00	LS	\$0.00000	\$0.00

Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
0212 K-MC-SGNL
1.00 LS
\$0.00000
$\$ 0.00$
7:35:50AM
Thursday, December 02, 2010

Total for Group 0052: $\$ 0.00$
Group 0053: Other Traffic Signal Costs

0213 K-OC-SGNL	1.00	LS	$\$ 0.00000$

Total for Group 0053: \$0.00
Group 0054: Landscaping

0214 L-MC-LSCP	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, LANDSCAPING			
0215 L-OC-LSCP	1.00	LS	$\$ 0.00000$

Total for Group 0054: \$0.00


Total for Group 0055: \$0.00
Group 0056: Other Retaining Wall Costs
0217 M-OC-WALL
1.00 LS
$\$ 0.00000$
$\$ 0.00$
OTHER COSTS, RETAINING WALLS

Group 0057: Building Demolition

0218	N-MC-DEMO	1.00	LS	\$0.00000	\$0.00
MAJOR COST DRIVERS, BUILDING DEMOLITION					
0219	N-OC-DEMO	1.00	LS	\$0.00000	\$0.00
OTHER COSTS, BUILDING DEMOLITION					
0538	202E56101	0.00	EACH	\$30,000.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0539	202E56101	0.00	EACH	\$15,000.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0540	202E56101	0.00	EACH	\$12,000.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0541	202E56101	0.00	EACH	\$7,500.00000	\$0.00
BUILDING DEMOLISHED, AS PER PLAN					
0542	202E98100	0.00	EACH	\$8,500.00000	\$0.00
REMOVAL MISC.:					
	o Tower				

Total for Group 0057: \$0.00
Group 0058: Noise Barrier
0220 P-MC-NSBR
1.00 LS
$\$ 0.00000$
$\$ 0.00$
7:35:50AM
Thursday, December 02, 2010
Page 8 of 11

Description Supplemental Description

MAJOR COST DRIVERS, NOISE BARRIER
0505 P-MC-NSBR
0.00 LS
$\$ 400.00000$
$\$ 0.00$

## Noise Barrier

Total for Group 0058: \$0.00
Group 0059: Other Noise Barrier Costs

0221	P-OC-NSBR	1.00	LS
OTHER COSTS, NOISE BARRIER	0.00	LS	$\$ 0.00000$
0368 P-MC-NSBR			
MAJOR COST DRIVERS, NOISE BARRIER			

Total for Group 0059: \$0.00
$\left.\begin{array}{llll}\text { Group 0060: New Structures } \\ \text { 0222 R-MC-STRC } \\ \text { MAJOR COST DRIVERS, STRUCTURES }\end{array}\right)$

Tier 3 Structures 50' to 75' Height
Total for Group 0060: $\$ 0.00$

## Group 0061: Rehabilitated Structures

$\begin{gathered} 0223 \\ \mathrm{M} \end{gathered}$	R-MC-STRC OR COST DR	ES 1.00	LS	\$0.00000	\$0.00
CLASS S CONCRETE, BRIDGE DECK new bridge deck on existing beams					
$0535$	$\begin{aligned} & \text { 514E99000 } \\ & \text { CIAL - BRIDG } \end{aligned}$	1.00	LS	\$22,000,000.00000	\$22,000,000.00
Structural repair/rehabilitation					\$1,000,000.00
$\begin{array}{r} 0537 \\ \mathrm{PC} \\ \mathrm{Br} \end{array}$	202E11301 TIONS OF S dge deck remo	170,177.00   ED, AS PER	$\begin{aligned} & \text { SF } \\ & \text { LAN } \end{aligned}$	\$10.00000	\$1,701,770.00

Total for Group 0061: \$30,657,965.00

## Group 0062: Other Structure Costs

## 0224 R-OC-STRC

OTHER COSTS, STRUCTURES Contingency
0534
0.00 LS
0.00
$\$ 0.00000$
$\$ 0.00000$
Total for Group 0062: \$0.00

Group 0063: Temporary Road and Pavement Costs

## Description

 Supplemental DescriptionGroup 0064: Portable Concrete Barrier (PCB)

## 0226 S-MC-MNTC <br> 1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$
$\$ 0.00$
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Group 0066: Sheeting
0229 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$
$\$ 0.00$
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC 0.00 LS \$0.00000 \$0.00 MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS $\$ 0.00000$ \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \$0.00000 \$0.00 MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0069: \$0.00
Group 0070: Other MOT Costs

0233	S-OC-MNTC	1.00	LS	$\$ 0.00000$
OTHER COSTS, MAINTENANCE OF TRAFFIC		$\$ 0.00$		
0512	S-OC-MNTC	0.00	MILE	$\$ 5,000,000.00000$

Total for Group 0070: \$0.00
Group 0071: Wetland Construction

0234	T-MC-WTLD	0.00	LS

MAJOR COST DRIVERS, WETLAND CONSTRUCTION
Total for Group 0071: \$0.00

## Description Supplemental Description

Group 0072: Misc. Costs

0235	U-MC-MISC	0.00 LS	$\$ 0.00000$
MAJOR COST DRIVERS, MISCELLANEOUS COSTS	$\$ 0.00$		
0236	$0.00 ~ L S$	$\$ 0.00000$	

OTHER COSTS, MISCELLANEOUS COSTS
0237 100E00300 0.00 LS $\$ 10,000.00000 \quad \$ 0.00$

SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE
0238 623E10000
1.00 LS
\$156,414.28000
\$156,414.28 CONSTRUCTION LAYOUT STAKES 0.5\%

0239 614E11000 MAINTAINING TRAFFIC 2\%	0.00	LS	\$0.00000	\$0.00
$\begin{array}{ll} 0240 & 619 E 16020 \\ \text { FIELD OFFICE, TYPE C } \end{array}$	19.00	MNTH	\$2,500.00000	\$47,500.00
$\begin{gathered} 0242 \text { 624E10000 } \\ \text { MOBILIZATION } \end{gathered}$	1.00	LS	\$800,000.00000	\$800,000.00
0511 103E05000	1.00	LS	\$156,414.28000	\$156,414.28

Total for Group 0072: \$1,160,328.56
Group 0073: Design Contingency Costs

0243	V-MC-CNTG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, CONTINGENCY COSTS		$\$ 0.00$		
0244	V-OC-CNTG	1.00	LS	$\$ 8,110,796.20000$

Total for Group 0073: \$8,110,796.20
Group 0074: Inflation Contingency
0266 V-OC-CNTG
0.00 LS
$\$ 0.00000$
$\$ 0.00$
OTHER COSTS, CONTINGENCY COSTS
Total for Group 0074: \$0.00

## Estimate Alt E OH cont 2

Estimated Cost: \$12,341,802.99
Contingency: 29.20\%
Estimated Total: \$15,945,609.46
Linn St Bridge Replacement and Gest St Reconstruction
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal

0001	A-MC-RDWY	0.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY				$\$ 0.00$
0343	$202 E 23000$	$15,372.00$	SY	$\$ 8.00000$

PAVEMENT REMOVED

Total for Group 0001: \$122,976.00
Group 0002: Excavation - Rock

0003 A-MC-RDWY			
MAJOR COST DRIVERS, ROADWAY	0.00 CY	$\$ 30.00000$	$\$ 0.00$

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil

O004 A-MC-RDWY	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, ROADWAY	$9,087.00$	CY	$\$ 8.00000$	$\$ 72,696.00$
O344 203E10000				
EXCAVATION				

Total for Group 0003: \$72,696.00
Group 0004: Excavation - Hazardous

0006 A-MC-RDWY   MAJOR COST DRIVERS, ROADWAY	1.00 LS	$\$ 0.00000$	$\$ 0.00$
		Total for Group 0004: \$0.00	

Group 0005: Fill - Embankment (includes wasting excess excavation)

0007	A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY				$\$ 0.00$
0345	203E20000	$9,087.00$	CY	$\$ 6.00000$

Total for Group 0005: \$54,522.00
Group 0006: Fill - Lime Modified Soil

0010 A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY	0.00	CY	$\$ 7.00000$
0346 205E10050   LIME STABILIZED EMBANKMENT	0.00		
O347 205E10300   LIME			$\$ 5.00000$

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY $0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00$
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier

0012 A-MC-RDWY	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, ROADWAY			$\$ 0.00$
$0465 \quad 622 E 10060$	0.00	FT	$\$ 110.00000$
$2: 57: 02 P M$			
Wednesday, December 01, 2010			Page 2 of 12

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00


Total for Group 0009: \$0.00

# Group 0010: Subgrade Treatment - Cement <br> 0016 A-MC-RDWY 13,837.00 SY MAJOR COST DRIVERS, ROADWAY <br> $\$ 2.50000$ <br> \$34,592.50 <br> Total for Group 0010: $\$ 34,592.50$ <br> Group 0011: Subgrade Treatment - Undercut \& Backfill 



Line \# Item Number
Description Supplemental Description

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000 0.00
SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
GUARDRAIL, TYPE 5
0038 606E22000 ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EAC IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 AGGREGATE BASE For Fencing
0424 601E32100 $0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00$ ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
$\$ 731.31641$
$\$ 0.00$
GATE, TYPE 47 For Fencing
0426 625E32000 GROUND ROD For Fencing
0466
0.00
$\$ 0.00000$
Total for Group 0012: \$0.00

0045	B-MC-ERCO	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, EROSION CONTROL			$\$ 0.00$	
0467	659E10000	$2,746.00$	SY	$\$ 1.00000$
SEEDING AND MULCHING				$\$ 2,746.00$
0531	$660 E 25000$	0.00	SY	$\$ 15.00000$

## Group 0015: Rock Channel Protection

0047	B-MC-ERCO	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, EROSION CONTROL		$\$ 0.00$		
0469	$601 E 32000$	0.00	CY	$\$ 75.00000$

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
$\$ 0.00000$

## Description Supplemental Description

MAJOR COST DRIVERS, EROSION CONTROL

$0470 \quad 832$ E10000	1.00	LS	$\$ 20,000.00000$
STORM WATER POLLUTION PREVENTION PLAN		$\$ 20,000.00$	
$0471 \quad 832 E 20000$	$6,000.00$	EACH	$\$ 1.00000$

Total for Group 0016: \$26,000.00
$\left.\begin{array}{llll}\begin{array}{c}\text { Group 0017: Other Erosion Control Costs } \\ \text { 0049 670E00700 } \\ \text { DITCH EROSION PROTECTION }\end{array} & 0.00 & \text { SY } & \\ \begin{array}{c}\text { 0050 B-OC-ERCO } \\ \text { OTHER COSTS, EROSION CONTROL }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00$

Total for Group 0017: \$0.00
Group 0018: Underdrains

0059 C-MC-DRNG	1.00	LS	$\$ 0.00000$	$\$ 0.00$
MAJOR COST DRIVERS, DRAINAGE				$\$ 8.00000$

Total for Group 0018: $\$ 37,152.00$
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \$0.00000 \$0.00 $\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}$ MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
$\$ 0.00$ MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'

0067 C-MC-DRNG	1.00	LS	$\$ 0.00000$
MAJOR COST DRIVERS, DRAINAGE			$\$ 0.00$
0476 C-MC-DRNG	0.00	FT	$\$ 550.00000$
MAJOR COST DRIVERS, DRAINAGE			
2:57:02PM			$\$ 0.00$
Wednesday, December 01, 2010			Page 5 of 12

Line \# Item Number Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"

```
0477 C-MC-DRNG 0.00 EACH
 MAJOR COST DRIVERS, DRAINAGE
 Concrete - Headwalls/wingwalls
0477 C-MC-DRNG \(\quad 0.00\) EACH \(\$ 1,500.00000 \quad \$ 0.00\)
0486 C-MC-DRNG
MAJOR COST DRIVERS, DRAINAGE \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)
 MAJOR COST DRIVERS, DRAINAGE
 Pipe Structures - Reinforced Concrete Pipe 10'-20'
 0488 C-MC-DRNG 0.00 EACH
 \$1,500.00000
\begin{tabular}{llll}
0076 \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0024: \$0.00

\section*{Group 0025: Closed Storm System}

Total for Group 0025: \$164,025.00

\section*{Group 0026: Other Drainage Costs}

\author{
0078 C-OC-DRNG \\ OTHER COSTS, DRAINAGE
}
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0026: \(\$ 0.00\)
Group 0027: Mainline - Travel Lanes
\begin{tabular}{ccccc}
0095 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0494 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) & \(\$ 0.00\) \\
13" Reinforced Concrete Pavement & & & \\
Includes 6" Agg Base and Subgrade Compaction & &
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{llll}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lllll}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{llll}
0122 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0497 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0031: \$0.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & \(13,837.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \(\$ 567,317.00\)

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{cccc}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0041: \$0.00
\(\left.\begin{array}{lllll}\text { Group 0042: Water Works } \\ \begin{array}{c}0164 \text { E-MC-WATR } \\ \text { MAJOR COST DRIVERS, WATER LINE }\end{array} & 0.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

2:57:02PM
Wednesday, December 01, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
0173 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, LIGHTING & 0.00 & EACH & \(\$ 469,000.00000\) & \(\$ 0.00\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 G-MC-LTNG & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0045: \$0.00
\begin{tabular}{lrrr}
Group O046: Lighting - Continuous Roadway & \\
0176 G-MC-LTNG & 1.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LIGHTING & & & \\
\begin{tabular}{l}
0500 G-MC-LTNG \\
Lighting - Continuous
\end{tabular} & \(2,640.00\) & FT & \(\$ 35.00000\)
\end{tabular}

Total for Group 0046: \$92,400.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \$0.000

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
\begin{tabular}{llll}
0178 H-OC-SURV & 0.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, TRAFFIC SURVEILLANCE & &
\end{tabular}

Total for Group 0048: \$0.00
Group 0049: Signs
\begin{tabular}{lrlr}
0179 J-MC-TRAF & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 0.00\) \\
\begin{tabular}{llll}
0501 J-MC-TRAF \\
Signs & 0.50 & MILE & \(\$ 250,000.00000\)
\end{tabular} \\
0532 & 0.00 & \(\$ 0.00000\) & \(\$ 125,000.00\) \\
\hline
\end{tabular}

Total for Group 0049: \$125,000.00
Group 0050: Pavement Marking
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0200 & J-MC-TRAF & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, TRAFFIC CONTROL} \\
\hline 0502 & 644E00100 & 1.04 & MILE & \$3,000.00000 & \$3,120.00 \\
\hline \multicolumn{6}{|c|}{EDGE LINE} \\
\hline 0503 & 644E00200 & 1.09 & MILE & \$2,000.00000 & \$2,180.00 \\
\hline \multicolumn{6}{|c|}{LANE LINE} \\
\hline
\end{tabular}

Total for Group 0050: \$5,300.00

\author{
Description Supplemental Description
}

\section*{Group 0051: Other Traffic Control Costs}
\begin{tabular}{lll}
0208 J-OC-TRAF & 1.00 LS & \(\$ 0.00000\) \\
OTHER COSTS, TRAFFIC CONTROL & & Total for Group 0051: \(\$ 0.00\)
\end{tabular}

Group 0052: Signals - Intersections
\begin{tabular}{llll}
0212 & K-MC-SGNL & 1.00 & LS
\end{tabular}\(\$ \$ 175,000.00000 \quad \$ 175,000.00\)

Total for Group 0052: \$175,000.00
Group 0053: Other Traffic Signal Costs
\begin{tabular}{lll}
0213 K-OC-SGNL & 1.00 LS & \(\$ 0.00000\) \\
OTHER COSTS, SIGNALS & & Total for Group 0053: \(\$ 0.00\)
\end{tabular}

Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \(\$ 0.00\) \\
\(0215 \quad\) L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{lrlrl}
0216 & M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & & \(\$ 0.00\) \\
0504 & M-MC-WALL & \(11,840.00\) & SF & \(\$ 135.00000\)
\end{tabular} Retaining Walls

Group 0056: Other Retaining Wall Costs
0217 M-OC-WALL
OTHER COSTS, RETAINING WALLS
Group 0057: Building Demolition

Description Supplemental Description
\begin{tabular}{llll}
\begin{tabular}{ll}
Large Residential & \\
0538 & 202E56101
\end{tabular}\(\quad 0.00\) EACH & \(\$ 30,000.00000\)
\end{tabular}

BUILDING DEMOLISHED, AS PER PLAN Large Commercial

Group 0058: Noise Barrier
\begin{tabular}{lllll}
0220 & P-MC-NSBR & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, NOISE BARRIER & & & \\
0505 & P-MC-NSBR & 0.00 & LS & \(\$ 25.00000\)
\end{tabular}

Total for Group 0058: \$0.00
Group 0059: Other Noise Barrier Costs
\begin{tabular}{lllll}
0221 & P-OC-NSBR & 1.00 & LS & \(\$ 0.00000\) \\
OTHER COSTS, NOISE BARRIER & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

\author{
MAJOR COST DRIVERS, NOISE BARRIER
}

Total for Group 0059: \(\$ 0.00\)

Total for Group 0060: \$6,022,303.00

\section*{Group 0061: Rehabilitated Structures}
\begin{tabular}{llll}
0223 R-MC-STRC & 0.00 SF & \(\$ 45.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, STRUCTURES & & Total for Group 0061: \$0.00
\end{tabular}

Group 0062: Other Structure Costs
\begin{tabular}{llll}
\begin{tabular}{l}
O224 R-OC-STRC \\
OTHER COSTS, STRUCTURES \\
Contingency
\end{tabular} & 0.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\hline
\end{tabular}

Total for Group 0062: \$0.00
Group 0063: Temporary Road and Pavement Costs

Group 0064: Portable Concrete Barrier (PCB)
```

0226 S-MC-MNTC 1.00 LS MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
$\$ 0.00000$

```

Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
\begin{tabular}{ll}
0227 & 1.00 LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC & \(\$ 0.00000\)
\end{tabular}

Group 0066: Sheeting
```

0229 S-MC-MNTC
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

```
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0067: \$0.00

Group 0068: Work Zone Lighting
\begin{tabular}{lll}
0231 & S-MC-MNTC & \(0.00 \quad\) LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\begin{tabular}{ccccc}
0233 & S-OC-MNTC & 1.00 & LS & \(\$ 0.00000\) \\
OTHER COSTS, MAINTENANCE OF TRAFFIC & & & \(\$ 0.00\) \\
0512 & S-OC-MNTC & 0.50 & MILE & \(\$ 500,000.00000\) \\
OTHER COSTS, MAINTENANCE OF TRAFFIC & & \(\$ 250,000.00\) \\
0533 & 0.00 & & \(\$ 0.00000\) & \(\$ 0.00\) \\
& & Total for Group 0070: \(\$ 250,000.00\)
\end{tabular}

Group 0071: Wetland Construction
\begin{tabular}{lcc}
0234 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & & \(\$ 0.00\) \\
\(0360 \quad\) T-MC-WTLD & 0.00 LS & \(\$ 0.00000\)
\end{tabular}\(\$ 0.00\)

Total for Group 0071: \$0.00

\section*{Line \# Item Number}

Description Supplemental Description

Group 0072: Misc. Costs
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0235 & U-MC-MISC & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, MISCELLANEOUS COSTS} \\
\hline 0236 & 100E00300 & 0.00 & LS & \$10,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE} \\
\hline 0237 & U-OC-MISC & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, MISCELLANEOUS COSTS} \\
\hline 0238 & \(623 E 10000\) & 1.00 & LS & \$46,752.15000 & \$46,752.15 \\
\hline \multicolumn{6}{|c|}{CONSTRUCTION LAYOUT STAKES} \\
\hline 0239 & 614E11000 & 1.00 & LS & \$187,008.59000 & \$187,008.59 \\
\hline \multicolumn{6}{|c|}{MAINTAINING TRAFFIC} \\
\hline 0240 & 619E16020 & 17.00 & MNTH & \$2,500.00000 & \$42,500.00 \\
\hline \multicolumn{6}{|c|}{FIELD OFFICE, TYPE C} \\
\hline 0242 & 624E10000 & 1.00 & LS & \$200,000.00000 & \$200,000.00 \\
\hline \multicolumn{6}{|c|}{MOBILIZATION} \\
\hline 0511 & 103E05000 & 1.00 & LS & \$46,752.15000 & \$46,752.15 \\
\hline \multicolumn{6}{|c|}{PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND} \\
\hline
\end{tabular}

Total for Group 0072: \$523,012.89
\begin{tabular}{lrrr}
Group 0073: Design Contingency Costs & & \\
0243 V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 2,468,360.60000\)
\end{tabular}

Total for Group 0073: \$2,468,360.60

\section*{Group 0074: Inflation Contingency} 0266 V-OC-CNTG

Total for Group 0074: \$0.00
\(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & X & Unit Price & = & Total Cost \\
\hline Titles & 3 & X & \$400 & = & \$1,200 \\
\hline \begin{tabular}{l}
Appraisal \\
-Simple \\
-Detailed
\end{tabular} & & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 13,500
\end{gathered}
\] \\
\hline Appraisal Review -Simple -Detailed & \[
\begin{aligned}
& 0 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \begin{tabular}{l}
\(=\) \\
\(=\) \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 0 \\
\$ 6,000
\end{gathered}
\] \\
\hline Negotiations & 3 & x & \$1,100 & \(=\) & \$3,300 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\)
\(=\)
\(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0 \\
& \$ 0
\end{aligned}
\] \\
\hline Closings & 3 & X & \$400 & = & \$1,200 \\
\hline Project Management & 3 & x & \$550 & = & \$1,650 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & = & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$26,850 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpacts of the priect on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates hat involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The acquire the right of way in a timely manner. The igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternativ, alternative, the step in the PDP process and

Cost/Unit were generated from auditors tax card data.

\section*{Estimate Alt E OH cont 3}

Estimated Cost: \$23,264,774.05
Contingency: 32.90\%
Estimated Total: \$30,918,884.71

OH-3 Ezzard Charles - Bridge Replacement, Western Ave Reconst., Freeman, Winchell, Court, 9th
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlr}
0001 A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & \(21,262.00\) & SY & \(\$ 8.00000\)
\end{tabular}

\section*{PAVEMENT REMOVED}

Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlrr}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0003: \$598,576.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
& & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0345 & \(203 E 20000\) & \(74,822.00\) & CY & \(\$ 6.00000\)
\end{tabular}

Total for Group 0005: \$448,932.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & & \\
\begin{tabular}{l}
O347 205E10300 \\
LIME
\end{tabular} & & & \(\$ 5.00000\)
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
0012 \\
\text { MA. }
\end{gathered}
\] & \begin{tabular}{l}
A-MC-RDWY \\
JOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline 0465 & 622 E 10060 & 2,420.00 & FT & \$110.00000 & \$266,200.00 \\
\hline \multicolumn{6}{|l|}{3:07:32PM} \\
\hline \multicolumn{6}{|l|}{Wednesday, December 01, 2010 Page 2 of 12} \\
\hline
\end{tabular}

Total for Group 0008: \(\$ 266,200.00\)
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00

\section*{Group 0010: Subgrade Treatment - Cement}

0016 A-MC-RDWY 32,714.00 SY MAJOR COST DRIVERS, ROADWAY
\(\$ 2.50000\)
Total for Group 0010: \(\$ 81,785.00\)

Group 0011: Subgrade Treatment - Undercut \& Backfill
0017 A-MC-RDWY \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, ROADWAY
Total for Group 0011: \$0.00

\section*{Group 0012: Other Roadway Costs}
\begin{tabular}{|c|c|c|c|c|}
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, } 30 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, 48" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0026 \text { 202E11000 } \\
& \text { STRUCTURE REMOVED }
\end{aligned}
\] & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER } 24 "
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{array}{ll}
0029 \text { 202E38000 } \\
\text { GUARDRAIL REMOVED }
\end{array}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \text { 202E58100 } \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{gathered}
0033 \text { 202E75000 } \\
\text { FENCE REMOVED }
\end{gathered}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

Line \# Item Number
Description Supplemental Description

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000 SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000 GUARDRAIL, TYPE 5
0038 606E22000 ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EACH IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 AGGREGATE BASE For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\$731.31641
\(\$ 0.00\)
GATE, TYPE 47 For Fencing
0426 625E32000 GROUND ROD For Fencing
0466
0.00
\(\$ 0.00000\)
Total for Group 0012: \$0.00

0045 B-MC-ERCO MAJOR COST DRIVERS, EROSION CONTROL 0467 659E10000 SEEDING AND MULCHING
0531 660E25000 0.00 SY SODDING STAKED
1.00 LS

21,752.00 SY
\(\$ 0.00000\)
\(\$ 0.00\)
\$1.00000
\$21,752.00
\$15.00000
\(\$ 0.00\)
Total for Group 0014: \$21,752.00
Group 0015: Rock Channel Protection
\begin{tabular}{lrlrl}
0047 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY & \(\$ 75.00000\)
\end{tabular}

Total for Group 0015: \(\$ 0.00\)
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
\(\$ 0.00000\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 50,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & & \(\$ 50,000.00\) \\
\(0471832 E 20000\) & \(35,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$85,000.00
\(\left.\begin{array}{llll}\begin{array}{c}\text { Group 0017: Other Erosion Control Costs } \\ \text { 0049 670E00700 } \\ \text { DITCH EROSION PROTECTION }\end{array} & 0.00 & \text { SY } & \\ \begin{array}{c}\text { 0050 B-OC-ERCO } \\ \text { OTHER COSTS, EROSION CONTROL }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrllr}
0059 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0018: \$217,960.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\) \(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}\) MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
\(\$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
\begin{tabular}{c}
0067 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) \\
0476 C-MC-DRNG & & & \(\$ 550.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & 0.00 & FT & \\
\begin{tabular}{l}
3:07:32PM \\
Wednesday, December 01, 2010
\end{tabular} & & & \(\$ 0.00\) \\
\hline
\end{tabular}

Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
```

0 4 7 7 ~ C - M C - D R N G ~ 0 . 0 0 ~ E A C H
MAJOR COST DRIVERS, DRAINAGE

```
 Concrete - Headwalls/wingwalls

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
0486 C-MC-DRNG
MAJOR COST DRIVERS, DRAINAGE \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
0487 C-MC-DRNG 0.00 FT \$1,400.00000 \$0.00

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH \$1,500.00000
\$0.00 MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
Group 0025: Closed Storm System

Total for Group 0025: \$179,925.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{cccc}
0095 D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0494 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & \\
Includes 6" Agg Base and Subgrade Compaction & & \(\$ 0.00\) \\
\begin{tabular}{l}
3:07:32PM \\
Wednesday, December 01, 2010
\end{tabular} & & Page 6 of 12
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{llll}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{llll}
0115 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0496 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{lrrr}
0122 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0497 & D-MC-PVMT & \(8,088.00\) & SY \\
13" Reinforced Concrete Pavement & & \(\$ 68.00000\) & \(\$ 549,984.00\) \\
Includes 6" Agg base and Subgrade Compaction & & & \(\$ 000\)
\end{tabular}

Total for Group 0031: \$549,984.00
Group 0032: Non - Mainline Lanes

Total for Group 0032: \$1,009,666.00

\section*{Group 0041: Other Pavement Costs}

0163 D-OC-PVMT

\section*{OTHER COSTS, PAVEMENT}

3:07:32PM

Group 0042: Water Works
\begin{tabular}{llll}
0164 & E-MC-WATR & 0.00 & LS \\
MAJOR COST DRIVERS, WATER LINE & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0165 & E-OC-WATR & 0.00 & LS
\end{tabular}\(\$ \$ 0.0000\)

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
\begin{tabular}{llll}
0170 & F-MC-SANI & 0.00 & LS \\
MAJOR COST DRIVERS, SANITARY SEWER & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0043: \$0.00
\begin{tabular}{lrlr}
Group 0044: Lighting - Full Interchange & & \\
\begin{tabular}{l}
0173 G-MC-LTNG \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{c}
0499 G-MC-LTNG \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 0.00 & EACH & \(\$ 469,000.00000\)
\end{tabular}

Total for Group 0044: \$0.00
Group 0045: Lighting - Partial Interchange
0288 G-MC-LTNG 0.00 LS \$0.00000 \$000

MAJOR COST DRIVERS, LIGHTING
Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
\begin{tabular}{lrrrr}
0176 & G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LIGHTING & & & \(\$ 0.00\) \\
0500 & G-MC-LTNG & \(3,696.00\) & FT & \(\$ 35.00000\)
\end{tabular}

Lighting - Continuous
Total for Group 0046: \$129,360.00
Group 0047: Other Lighting Costs
\begin{tabular}{lll}
\begin{tabular}{l}
0177 G-OC-LTNG \\
OTHER COSTS, LIGHTING
\end{tabular} & 0.00 LS & \(\$ 0.00000\)
\end{tabular}

Group 0048: Traffic Surveillance
0178 H-OC-SURV \(0.00 \mathrm{LS} \quad \$ 0.00000\) \$0.00

OTHER COSTS, TRAFFIC SURVEILLANCE
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0048: \$0.00

Group 0049: Signs
\begin{tabular}{lrlr}
0179 J-MC-TRAF & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 0.00\) \\
0501 J-MC-TRAF & 0.70 & MILE & \(\$ 250,000.00000\) \\
Signs & & & \(\$ 175,000.00\) \\
3:07:32PM & & & \\
Wednesday, December 01, 2010 & & & \\
\hline
\end{tabular}

Total for Group 0049: \$175,000.00
Group 0050: Pavement Marking
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0200 & J-MC-TRAF & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, TRAFFIC CONTROL} \\
\hline 0502 & 644E00100 & 4.04 & MILE & \$3,000.00000 & \$12,120.00 \\
\hline \multicolumn{6}{|c|}{EDGE LINE} \\
\hline 0503 & 644E00200 & 0.85 & MILE & \$2,000.00000 & \$1,700.00 \\
\hline \multicolumn{6}{|c|}{LANE LINE} \\
\hline
\end{tabular}

Total for Group 0050: \$13,820.00
Group 0051: Other Traffic Control Costs
0208 J-OC-TRAF \(\quad 1.00 \mathrm{LS} \quad \$ 0.00000\)

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{llll}
0212 K-MC-SGNL & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}\(\$ 0.00\)

Total for Group 0052: \$0.00
Group 0053: Other Traffic Signal Costs
0213 K-OC-SGNL 1.00 LS \(\$ 0.00000 \quad \$ 0.00\)

OTHER COSTS, SIGNALS
Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 & L-MC-LSCP & 1.00 & LS \\
MAJOR COST DRIVERS, LANDSCAPING & & & \(\$ 0.00000\) \\
0215 & L-OC-LSCP & 1.00 & LS
\end{tabular}

OTHER COSTS, LANDSCAPING
Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{lrrrr}
0216 & M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & \(\$ 0.00\) \\
0504 & M-MC-WALL & \(33,465.00\) & SF & \(\$ 135.00000\)
\end{tabular}

Total for Group 0055: \$4,517,775.00
Group 0056: Other Retaining Wall Costs
\begin{tabular}{llll}
0217 M-OC-WALL & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

\section*{OTHER COSTS, RETAINING WALLS}

Total for Group 0056: \$0.00
Group 0057: Building Demolition
0218 N-MC-DEMO
1.00 LS MAJOR COST DRIVERS, BUILDING DEMOLITION
\(\$ 0.00000\)
\(\$ 0.00\)

3:07:32PM
Wednesday, December 01, 2010

\section*{Description Supplemental Description}
\begin{tabular}{llll}
0219 & N-OC-DEMO & 1.00 & LS
\end{tabular}

Total for Group 0057: \$0.00
\begin{tabular}{lrrr}
Group 0058: Noise Barrier & & & \\
0220 P-MC-NSBR & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, NOISE BARRIER & & & \(\$ 0.00\) \\
\begin{tabular}{l}
0505 P-MC-NSBR \\
Noise Barrier
\end{tabular} & \(13,370.00\) & SF & \(\$ 25.00000\)
\end{tabular}

Total for Group 0058: \$334,250.00
\begin{tabular}{lllll}
Group 0059: Other Noise Barrier Costs & & \\
\begin{tabular}{llll}
\(0221 \quad\) P-OC-NSBR \\
OTHER COSTS, NOISE BARRIER & 1.00 & LS & \(\$ 0.00000\)
\end{tabular} \\
\begin{tabular}{c}
0368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\hline
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \$8,453,627.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
\$0.00000
\$0.00
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \(\$ 0.00\)
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0063: \(\$ 0.00\)
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00000
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \(\$ 0.00\)
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lllll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.70 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{lllll}0512 & \text { S-OC-MNTC } & 0.70 & \text { MILE } & \$ 500,000.00000\end{array}\)
Total for Group 0070: \$350,000.00
Group 0071: Wetland Construction
\begin{tabular}{ccc}
0234 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & & \(\$ 0.00\) \\
0360 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\)
\end{tabular}\(\$ 0.00\)

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
3:07:32PM
Wednesday, December 01, 2010

Line \# Item Number
Description Supplemental Description

Unit Price
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0235 & U-MC-MISC & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, MISCELLANEOUS COSTS} \\
\hline 0236 & U-OC-MISC & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, MISCELLANEOUS COSTS} \\
\hline 0237 & 100E00300 & 0.00 & LS & \$10,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE} \\
\hline 0239 & 623E10000 & 1.00 & LS & \$88,018.54000 & \$88,018.54 \\
\hline \multicolumn{6}{|c|}{CONSTRUCTION LAYOUT STAKES} \\
\hline \multicolumn{6}{|c|}{0.5\%} \\
\hline 0240 & 614E11000 & 1.00 & LS & \$352,074.16000 & \$352,074.16 \\
\hline \multicolumn{6}{|c|}{MAINTAINING TRAFFIC} \\
\hline \multicolumn{6}{|l|}{2\%} \\
\hline 0241 & 619E16020 & 32.00 & MNTH & \$2,500.00000 & \$80,000.00 \\
\hline \multicolumn{6}{|c|}{FIELD OFFICE, TYPE C} \\
\hline 0242 & 624E10000 & 1.00 & LS & \$400,000.00000 & \$400,000.00 \\
\hline \multicolumn{6}{|c|}{MOBILIZATION} \\
\hline 0511 & 103E05000 & 1.00 & LS & \$88,018.54000 & \$88,018.54 \\
\hline \multicolumn{6}{|c|}{PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND} \\
\hline \multicolumn{6}{|c|}{0.5\%} \\
\hline 0518 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline 0519 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline 0520 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline 0521 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline 0532 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0072: \$1,008,111.24
Group 0073: Design Contingency Costs
\begin{tabular}{lrrrr}
0243 & V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 4,652,954.81000\) & \(\$ 4,652,954.81\) \\
OTHER COSTS, CONTINGENCY COSTS & & & &
\end{tabular}

Total for Group 0073: \$4,652,954.81

\section*{Group 0074: Inflation Contingency}
\begin{tabular}{llll}
0266 & \(V-O C-C N T G\) & 0.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

\section*{OTHER COSTS, CONTINGENCY COSTS}

Total for Group 0074: \$0.00
\(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & x & Unit Price & = & Total Cost \\
\hline Titles & 3 & x & \$400 & = & \$1,200 \\
\hline \begin{tabular}{l}
Appraisal \\
-Simple \\
-Detailed
\end{tabular} & \[
2
\] & \[
\begin{aligned}
& x \\
& x
\end{aligned}
\] & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 750 \\
\$ 9,000
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Appraisal Review \\
-Simple \\
-Detailed
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \(=\)
\(=\)
\(=\) & \[
\begin{gathered}
\$ 500 \\
\$ 4,000
\end{gathered}
\] \\
\hline Negotiations & 2 & x & \$1,100 & = & \$2,200 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\)
\(=\)
\(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0 \\
& \$ 0
\end{aligned}
\] \\
\hline Closings & 3 & x & \$400 & = & \$1,200 \\
\hline Project Management & 3 & x & \$550 & \(=\) & \$1,650 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & = & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$20,500 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors tax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpact of the project on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates that involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The acquire the right of way in a timely manner. The igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternative, the step in the PDP process and the alternative, the step in the PDP process and the
person(s) performing the estimate.
Comments Changed "Agriculture" category to "Park" to include the Queensgate Ball Fields.

\section*{Estimate Alt E OH cont 4}

Estimated Cost: \$40,561,231.89
Contingency: 32.90\%
Estimated Total: \$53,905,877.18

OH-4 Seventh St, Eigth St, Ninth Street and 6th St northbound entrance ramps
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(8,349.00\) & SY & \(\$ 8.00000\)
\end{tabular}

Total for Group 0001: \(\$ 66,792.00\)
Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlll}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 94,912.00\) \\
0344 203E10000 & \(11,864.00\) & CY & \(\$ 8.00000\) &
\end{tabular}

Total for Group 0003: \$94,912.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
0006 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0345 & 203E20000 & \(11,864.00\) & CY & \(\$ 6.00000\)
\end{tabular}

Total for Group 0005: \$71,184.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & & \\
\begin{tabular}{l}
O347 205E10300 \\
LIME
\end{tabular} & & & \(\$ 5.00000\)
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{crrrr}
0012 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0465 & \(622 E 10060\) & \(2,905.00\) & FT & \(\$ 110.00000\) \\
\(3: 27: 42\) PM & & & & \(\$ 319,550.00\) \\
Wednesday, December 01, 2010 & & & Page 2 of 12
\end{tabular}

Total for Group 0008: \(\$ 319,550.00\)
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Group 0010: Subgrade Treatment - Cement} \\
\hline \multirow[t]{2}{*}{0016 A-MC-RDWY MAJOR COST DRIVERS, ROADWAY} & 8,083.00 SY & \$2.50000 & \$20,207.50 \\
\hline & & \multicolumn{2}{|l|}{Total for Group 0010: \(\$ 20,207.50\)} \\
\hline \multicolumn{4}{|l|}{Group 0011: Subgrade Treatment - Undercut \& Backfill} \\
\hline 0017 A-MC-RDWY
MAJOR COST DRIVERS, ROADWAY & 1.00 LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0011: \$0.00

Line \# Item Number
Description Supplemental Description

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000 SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000 GUARDRAIL, TYPE 5
0038 606E22000 ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EAC IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 0.00 CY AGGREGATE BASE For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500 GATE, TYPE 47 For Fencing
0426 625E32000 GROUND ROD For Fencing
0466 0.00 \(\$ 0.00000\)
Total for Group 0012: \$0.00
\begin{tabular}{lrlll}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & 659E10000 & \(3,553.00\) & SY & \(\$ 1.00000\) \\
SEEDING AND MULCHING & & & & \(\$ 3,553.00\) \\
0531 & \(660 E 25000\) & 0.00 & SY & \(\$ 15.00000\)
\end{tabular}

\section*{Group 0015: Rock Channel Protection}
\begin{tabular}{lrlrl}
0047 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY & \(\$ 75.00000\)
\end{tabular} ROCK CHANNEL PROTECTION, TYPE A WITH FILTER

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
\(\$ 0.00000\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 50,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & \(\$ 50,000.00\) \\
\(0471 \quad 832 E 20000\) & \(6,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$56,000.00
\(\left.\begin{array}{llll}\begin{array}{c}\text { Group 0017: Other Erosion Control Costs } \\ \text { 0049 670E00700 } \\ \text { DITCH EROSION PROTECTION }\end{array} & 0.00 & \text { SY } & \\ \begin{array}{l}\text { 0050 B-OC-ERCO } \\ \text { OTHER COSTS, EROSION CONTROL }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrllr}
0059 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0018: \$55,792.00

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{cccc}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00\) \\
0476 C-MC-DRNG & 0.00 & FT & \(\$ 550.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
\begin{tabular}{l}
3:27:42PM \\
Wednesday, December 01, 2010
\end{tabular} & & & \(\$ 0.00\) \\
\hline
\end{tabular}

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
\begin{tabular}{llll}
0477 C-MC-DRNG & 0.00 & EACH & \(\$ 1,500.00000\)
\end{tabular}\(\$ \$ 0.00\)

Concrete - Headwalls/wingwalls
Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{lrll}
0486 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
0487 C-MC-DRNG & 0.00 & FT & \(\$ 1,400.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
Pipe Structures - Reinforced Concrete Pipe & \(10^{\prime}-20^{\prime}\) & & \(\$ 1,500.00000\) \\
\begin{tabular}{l}
0488 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 0.00 & EACH & \\
Concrete Masonry & & & \(\$ 0.00\) \\
\hline
\end{tabular}

Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 & C-MC-DRNG & 1.00 LS & \(\$ 0.00000\)
\end{tabular}

\section*{MAJOR COST DRIVERS, DRAINAGE}

Total for Group 0024: \$0.00

\section*{Group 0025: Closed Storm System}
\begin{tabular}{lrlrr}
0077 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular}

Total for Group 0025: \$17,625.00

\section*{Group 0026: Other Drainage Costs}

\author{
0078 C-OC-DRNG \\ OTHER COSTS, DRAINAGE
}
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0026: \(\$ 0.00\)
Group 0027: Mainline - Travel Lanes
\begin{tabular}{ccccc}
0095 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0494 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) & \(\$ 0.00\) \\
13" Reinforced Concrete Pavement & & & \\
Includes 6" Agg Base and Subgrade Compaction & &
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{llll}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lllll}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{lrlrl}
0122 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0497 & D-MC-PVMT & \(2,932.00\) & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement
Includes 6" Agg base and Subgrade Compaction
Total for Group 0031: \$199,376.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & \(5,151.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$211,191.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{rrr}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0041: \$0.00
\begin{tabular}{llll}
Group 0042: Water Works & & & \\
\begin{tabular}{c}
0164 E-MC-WATR \\
MAJOR COST DRIVERS, WATER LINE
\end{tabular} & \(0.00 \quad\) LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
0165 E-OC-WATR \\
OTHER COSTS, WATER LINE
\end{tabular} & \(0.00 \quad\) LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$000
MAJOR COST DRIVERS, SANITARY SEWER

3:27:42PM
Wednesday, December 01, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
\begin{tabular}{l}
0173 \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
0499 & G-MC-LTNG & 0.00 & EACH & \(\$ 469,000.00000\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0288 & G-MC-LTNG & 0.00 & LS & \$0.00000 & \multirow[t]{2}{*}{\$0.00} \\
\hline \multicolumn{2}{|r|}{MAJOR COST DRIVERS, LIGHTING} & & & & \\
\hline
\end{tabular}

Total for Group 0045: \$0.00
\begin{tabular}{lrrrr}
Group 0046: Lighting - Continuous Roadway & & \\
\begin{tabular}{c}
0176 G-MC-LTNG \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
050 GC-MTNG \\
Lighting - Continuous
\end{tabular} & \(3,168.00\) & FT & \(\$ 35.00000\) & \(\$ 110,880.00\)
\end{tabular}

Total for Group 0046: \$110,880.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \$0.000

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
\begin{tabular}{llll}
0178 H-OC-SURV & 0.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, TRAFFIC SURVEILLANCE & &
\end{tabular}

Total for Group 0048: \$0.00
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 0.6 Signs
\$250,000.00000
\$150,000.00
Total for Group 0049: \$150,000.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 J-MC-TRAF & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 6,390.00\) \\
0502 644E00100 & 2.13 & MILE & \(\$ 3,000.00000\) & \(\$ 2,180.00\) \\
EDGE LINE & 1.09 & MILE & \(\$ 2,000.00000\) & \\
\begin{tabular}{l}
0503 644E00200 \\
LANE LINE
\end{tabular} & & & Total for Group 0050: \(\$ 8,570.00\)
\end{tabular}

Group 0051: Other Traffic Control Costs
\begin{tabular}{llll}
0208 J-OC-TRAF & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, TRAFFIC CONTROL & &
\end{tabular}

OTHER COSTS, TRAFFIC CONTROL Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{cccc}
\begin{tabular}{c}
0212 \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) \\
& & Total for Group 0052: & \(\$ 0.00\)
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{llll}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & \\
\begin{tabular}{l}
0504 M-MC-WALL \\
Retaining Walls
\end{tabular} & \(4,125.00\) & SF & \(\$ 135.00000\)
\end{tabular}

Total for Group 0055: \$556,875.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \(\$ 0.00\)
Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0532 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{REMOVAL MISC.:} \\
\hline \multicolumn{6}{|c|}{Radio Tower} \\
\hline 0533 & 202E56101 & 0.00 & EACH & \$7,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Residential} \\
\hline 0534 & 202E56101 & 1.00 & EACH & \$15,000.00000 & \$15,000.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Commercial} \\
\hline 0535 & 202E56101 & 0.00 & EACH & \$12,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Large Residential} \\
\hline 0536 & 202E56101 & 1.00 & EACH & \$30,000.00000 & \$30,000.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0058: Noise Barrier} \\
\hline \multicolumn{5}{|l|}{MAJOR COST DRIVERS, NOISE BARRIER} \\
\hline \multicolumn{5}{|l|}{Noise Barrier} \\
\hline & & & Total & \\
\hline \multicolumn{5}{|l|}{Group 0059: Other Noise Barrier Costs} \\
\hline \begin{tabular}{l}
0221 P-OC-NSBR \\
OTHER COSTS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \(\$ 28,361,993.00\)
Group 0061: Rehabilitated Structures
```

0223 R-MC-STRC 0.00 SF
$\$ 45.00000$
$\$ 0.00$
MAJOR COST DRIVERS, STRUCTURES

```

Total for Group 0061: \$0.00

\section*{Group 0062: Other Structure Costs}

0224 R-OC-STRC
OTHER COSTS, STRUCTURES Contingency
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0062: \(\$ 0.00\)

Group 0063: Temporary Road and Pavement Costs
\begin{tabular}{ll}
0225 S-MC-MNTC & 1.00 LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\end{tabular}

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
\begin{tabular}{lll}
0227 & 1.00 LS & \(\$ 0.000\)
\end{tabular}

Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00000
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \(\$ 0.00\)
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \(\$ 0.00\)
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lllll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.60 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 0.60 & \text { MILE } & \$ 500,000.00000\end{array}\)
Total for Group 0070: \$300,000.00
Group 0071: Wetland Construction
\begin{tabular}{ccc}
0234 & 0.00 L-MC-WTLD & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & 0.00 LS & \(\$ 0.00\) \\
0360 T-MC-WTLD & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & &
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
3:27:42PM
Wednesday, December 01, 2010

Line \# Item Number Description

Unit Price
0235 U-MC-MISC 0.00 LS \$0.00000 \$0.00 MAJOR COST DRIVERS, MISCELLANEOUS COSTS
0236 U-OC-MISC 0.00 LS \(\$ 0.00\) OTHER COSTS, MISCELLANEOUS COSTS
0237 100E00300 0.00 LS \$10,000.00000 \$0.00 SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE
0238 623E10000 \(1.00 \mathrm{LS} \quad \$ 153,247.50000 \quad \$ 153,247.50\)
 CONSTRUCTION LAYOUT STAKES
 0.5\%
0239 614E11000 1.00 LS \$612,990.01000 \$612,990.01
 MAINTAINING TRAFFIC
 2\%
\begin{tabular}{lllll}
0240 & 619E16020 & 32.00 & MNTH & \(\$ 2,500.00000\) \\
FIELD OFFICE, TYPE C & 1.00 & LS & \(\$ 800,000.00000\) & \(\$ 80,000.00\) \\
\begin{tabular}{cc}
0242 \\
MOBILIZATION
\end{tabular} & 1.00 & LS & \(\$ 153,247.50000\) & \(\$ 800,000.00\) \\
0511 & \(103 E 05000\) & & & \(\$ 153,247.50\)
\end{tabular}
 PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND
 0.5\%
\begin{tabular}{llll}
0518 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0519 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0520 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0521 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrrr}
0243 V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 8,112,246.38000\) \\
OTHER COSTS, CONTINGENCY COSTS & & & \(\$ 8,112,246.38\) \\
\(25 \%\) & & &
\end{tabular}

Total for Group 0073: \$8,112,246.38

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
\(\$ 0.00000\)
Total for Group 0074: \$0.00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Macro View & & & & & & & & & & & & & butes & & \\
\hline Acquisition & Unit (SF) or (Acreage) & X & \[
\begin{aligned}
& \text { Cost/Unit } \\
& \text { (\$\$/SF) } \\
& \text { (\$\$/Acre) } \\
& \hline
\end{aligned}
\] & Subtotal Land Value & + & \[
\begin{array}{|c|}
\hline \text { Structure } \\
\text { Values } \\
\text { (if Taken) } \\
\hline
\end{array}
\] & + & \begin{tabular}{|c|}
\hline Damages \\
(Loss in Value \\
to the Residue)
\end{tabular} & \begin{tabular}{|c|}
\hline Subtotal \\
Structures \& \\
Damages
\end{tabular} & \(=\) & Total Non Labor Acquisition Costs & Parcel Count & Total Takes & Partial Takes & No. of Structures Impacted \\
\hline -Residential & 0.02 & \(\times\) & \#\#\#\#\#\#\#\#\#\#\# & \$26,845 & + & 0 & + & N/A & \$0.00 & \(=\) & \$26,845.33 & 1 & 0 & 1 & 0 \\
\hline -Commercial & 0.8 & x & \$659,087.22 & \$527,270 & + & 4843600 & + & N/A & \$4,843,600.00 & = & \$5,370,869.78 & 3 & 0 & 3 & 2 \\
\hline -Industrial & 0 & \(\times\) & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & = & \$0.00 & 0 & 0 & 0 & 0 \\
\hline -Agricultural & 0 & \(\times\) & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & \(=\) & \$0.00 & 0 & 0 & 0 & 0 \\
\hline Relocation & Unit (Displacement) & x & *RHP/* & *RS & + & Move Cost & + & Reestablis & shment & \(=\) & Total Non Labor RAP Costs & Estim & \begin{tabular}{l}
amount of tim \\
all RAP parce
\end{tabular} & \begin{tabular}{l}
necessary \\
= (months)
\end{tabular} & \begin{tabular}{l}
relocate \\
18
\end{tabular} \\
\hline \[
\begin{aligned}
& \text {-Residential } \\
& \text { Owner Occupant } \\
& \text { Tenant }
\end{aligned}
\] & \[
0
\] & \(x\)
x & \$34,0 & & \[
\begin{aligned}
& + \\
& + \\
& +
\end{aligned}
\] & \[
\begin{aligned}
& \$ 6,000 \\
& \$ 1,750
\end{aligned}
\] & & & & \(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0
\end{aligned}
\] & Estima ac & \begin{tabular}{l}
number of yea \\
isition begins =
\end{tabular} & until projec & wide R/W \\
\hline \[
\begin{aligned}
& \hline \text {-Commerical/Farm/NPO } \\
& \text { Owner } \\
& \text { Tenant }
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 0 \\
& \hline
\end{aligned}
\] & & & & x
x
x & \[
\begin{aligned}
& \$ 15,000 \\
& \$ 15,000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& + \\
& + \\
& +
\end{aligned}
\] & & & \(=\)
\(=\)
\(=\) & \[
\begin{gathered}
\$ 25,000 \\
\$ 0 \\
\hline
\end{gathered}
\] & & & & \\
\hline -Personal Property & 0 & & & & X & \$1,000 & & & & \(=\) & \$0 & & & & \\
\hline \multicolumn{7}{|l|}{\(\{[(\) Total Cost of Acquisition Cost \() \times 0.90] \times 0.025\}+\{[\) (Total of Acquisition Cost \() \times 0.15] \times 1.20\}+\{[(\) Total of Acquisition Cost) \(\times 0.10] \times 1.50\}=\) Contingency} & \multicolumn{4}{|c|}{\(\underset{\left.\begin{array}{c}\text { Contingency } \\ \text { (Incidentals, Admin. Review \& Appropriation) }\end{array}\right)}{ }\)} & 1902694.575 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
*RHP - Replacement Housing Payment \\
*RSP - Rent Supplemental Payment \\
*NPO - Non-Profit Organization
\end{tabular}}} \\
\hline & & & & & & & \multicolumn{4}{|c|}{Total Non Labor R/W Costs} & \$7,325,409.68 & & & & \\
\hline
\end{tabular}

\section*{Instruction for Acquisition \& Relocation Cost Estimates}

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditor tax card data. Cost Estimates prepared at Step 4 tax card data. Cost Estimates prepared at Step 4
(Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only ff the structures are taken.
Damages must be assessed by a pre-qualified exper with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the impacts of the project on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates that involve a business or a mulit-tenant residential structure should use the services of a relocation
\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & x & Unit Price & = & Total Cost \\
\hline Titles & 4 & x & \$400 & = & \$1,600 \\
\hline Appraisal -Simple -Detailed & \[
\begin{aligned}
& 1 \\
& 3
\end{aligned}
\] & \[
\left|\begin{array}{l}
x \\
x
\end{array}\right|
\] & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 750 \\
\$ 13,500
\end{gathered}
\] \\
\hline Appraisal Review -Simple -Detailed & \[
\begin{aligned}
& 1 \\
& 3
\end{aligned}
\] & \[
\left|\begin{array}{l}
x \\
x
\end{array}\right|
\] & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 500 \\
\$ 6,000
\end{gathered}
\] \\
\hline Negotiations & 4 & x & \$1,100 & = & \$4,400 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 1
\end{aligned}
\] & \[
\left|\begin{array}{l}
x \\
x \\
x
\end{array}\right|
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 0 \\
\$ 5,600
\end{gathered}
\] \\
\hline Closings & 4 & x & \$400 & \(=\) & \$1,600 \\
\hline Project Management & 4 & x & \$550 & \(=\) & \$2,200 \\
\hline Asbestos Testing \& Abatement & & X & & = & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$36,150 \\
\hline \multicolumn{6}{|l|}{\({ }^{*}\) NPO \(=\) Non-Profit Organization} \\
\hline
\end{tabular}

Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The person making the cost estimate may adjust the igures given for the particular project being estimat to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternative the step in the PDP process and the alternative, the step in the PDP process and the person(s) performing the estimate

Comments
Cost/Unit were generated from auditors tax card data.

\section*{Estimate Alt E OH cont 5}

Estimated Cost: \$160,063,863.43
Contingency: 51.30\%
Estimated Total: \$242,176,625.37

OH-5 Reconstruct l-75 from Findlay to the Northern Terminus of the Corridor
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(121,484.00\) & SY & \(\$ 8.00000\)
\end{tabular}

Group 0002: Excavation - Rock
\begin{tabular}{lrlll}
\hline 0003 & A-MC-RDWY & 0.00 & CY & \(\$ 30.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0532 & \(203 E 10001\) & \(9,835.00\) & CY & \(\$ 30.00000\)
\end{tabular}

\author{
EXCAVATION, AS PER PLAN
}

Total for Group 0002: \(\$ 295,050.00\)
Group 0003: Excavation - Soil
\begin{tabular}{lrlll}
\hline 0004 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0344 & \(132,253.00\) & CY & \(\$ 8.00000\) & \(\$ 1,058,024.00\)
\end{tabular}

Total for Group 0003: \$1,058,024.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
0006 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0004: \$0.00
\begin{tabular}{lrlr}
Group 0005: Fill - Embankment (includes wasting excess excavation) \\
0007 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
\begin{tabular}{l}
0345 203E20000 \\
EMBANKMENT
\end{tabular} & \(273,627.00 \mathrm{CY}\) & \(\$ 6.00000\) & \(\$ 1,641,762.00\)
\end{tabular}

Total for Group 0005: \$1,641,762.00
\(\left.\begin{array}{llll}\begin{array}{l}\text { Group 0006: Fill - Lime Modified Soil } \\
\text { 0010 A-MC-RDWY } \\
\text { MAJOR COST DRIVERS, ROADWAY }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right]\)\begin{tabular}{l}
0346 205E10050 \\
\begin{tabular}{llll}
LIME STABILIZED EMBANKMENT
\end{tabular} \\
\begin{tabular}{llll}
0347 205E10300
\end{tabular} \\
\hline
\end{tabular}

Total for Group 0006: \(\$ 0.00\)
Group 0007: Fill - Borrow
0011 A-MC-RDWY 131,539.00 CY
\(\$ 8.00000\)
\$1,052,312.00
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$1,052,312.00
Group 0008: Concrete Barrier
0012 A-MC-RDWY
\(\$ 0.00000\)
\(\$ 0.00\)
3:42:13PM
Wednesday, December 01, 2010

Description Supplemental Description

MAJOR COST DRIVERS, ROADWAY
0465 622E10060
18,340.00 FT
T
\(\$ 110.00000\)
\$2,017,400.00
CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$2,017,400.00
Group 0009: Subgrade Treatment - Lime
\(\left.\begin{array}{lllll}0014 \text { A-MC-RDWY } \\ \text { MAJOR COST DRIVERS, ROADWAY }\end{array}\right)\)

Total for Group 0009: \(\$ 0.00\)

\section*{Group 0010: Subgrade Treatment - Cement}
0016 A-MC-RDWY 383,252.00 SY
\(\$ 2.50000\)
\$958,130.00 MAJOR COST DRIVERS, ROADWAY

Total for Group 0010: \$958,130.00

Group 0011: Subgrade Treatment - Undercut \& Backfill
0017 A-MC-RDWY
1.00 LS

MAJOR COST DRIVERS, ROADWAY
\(\$ 0.00000\)
Total for Group 0011: \$0.00

Group 0012: Other Roadway Costs

\section*{Description Supplemental Description}

Total for Group 0012: \(\$ 26,082.00\)
Group 0014: Seeding \& Mulching / Sodding

Total for Group 0014: \$0.00
\begin{tabular}{lrrr}
Group 0015: Rock Channel Protection & & \\
0047 B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00\) \\
0469 & 24.00 & CY & \(\$ 75.00000\)
\end{tabular}

Total for Group 0015: \$1,800.00

\section*{Description Supplemental Description}

Group 0016: Erosion Control - Item 832

0048 B-MC-ERCO 1.00 LS
MAJOR COST DRIVERS, EROSION CONTROL
0470 832E10000 1.00 STORM WATER POLLUTION PREVENTION PLAN

0471 832E20000 120,000.00 EACH EROSION CONTROL
\(\$ 0.00000\)
\(\$ 0.00\)
\(\$ 50,000.00000\)
\(\$ 50,000.00\)
\$1.00000 \$120,000.00

Total for Group 0016: \$170,000.00

Group 0017: Other Erosion Control Costs
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{cl}
0049 & 670 E 00700 \\
\text { DITCH EROSION PROTECTION }
\end{array}
\] & 0.00 & SY & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0050 \text { B-OC-ERCO } \\
& \text { OTHER COSTS, EROSION CONTROL }
\end{aligned}
\] & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0051 \text { 659E00100 } \\
& \text { SOIL ANALYSIS TEST }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0052659 E 00300 \\
& \text { TOPSOIL }
\end{aligned}
\] & 0.00 & CY & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0053659 E 14000 \\
& \text { REPAIR SEEDING AND MULCHING }
\end{aligned}
\] & 0.00 & SY & \$0.00000 & \$0.00 \\
\hline \[
\begin{array}{cc}
0054 \text { 659E15000 } \\
\text { INTER-SEEDING }
\end{array}
\] & 0.00 & SY & \$0.71000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0055 \text { 659E20000 } \\
& \text { COMMERCIAL FERTILIZER }
\end{aligned}
\] & 0.00 & TON & \$410.06813 & \$0.00 \\
\hline \[
\begin{aligned}
& 0056659 \mathrm{E} 31000 \\
& \text { LIME }
\end{aligned}
\] & 0.00 & ACRE & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0057 \quad 659 E 35000 \\
& \text { WATER }
\end{aligned}
\] & 0.00 & MGAL & \$5.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0058 \text { 659E40000 } \\
& \text { MOWING }
\end{aligned}
\] & 0.00 & MSF & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0017: \$0.00
Group 0018: Underdrains

Total for Group 0019: \(\$ 0.00\)
Group 0021: Culverts, Type A: 5' - 10'
0067 C-MC-DRNG
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, DRAINAGE
3:42:13PM
Wednesday, December 01, 2010

\section*{Description \\ Supplemental Description}
\begin{tabular}{lccc}
0476 & C-MC-DRNG & 0.00 & FT
\end{tabular}

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & 0.00 & FT & \(\$ 1,400.00000\) \\
0487 C-MC-DRNG & & & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & \\
\begin{tabular}{l}
Pipe Structures - Reinforced Concrete Pipe \\
0488 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 0.00 & EACH & \(\$ 1,500.00000\) \\
Concrete Masonry & & & \(\$ 0.00\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & Total & \$0.00 \\
\hline \multicolumn{5}{|l|}{Group 0024: BMP's} \\
\hline 0076 C-MC-DRNG & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{3}{|l|}{MAJOR COST DRIVERS, DRAINAGE} & Total f & \$0.00 \\
\hline \multicolumn{5}{|l|}{Group 0025: Closed Storm System} \\
\hline \begin{tabular}{l}
0077 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline 0489 603E13400
30 CONDUIT, TYPE B (Average size) & 12,495.00 & FT & \$75.00000 & \$937,125.00 \\
\hline \multicolumn{5}{|l|}{CATCH BASIN, NO. 3A} \\
\hline \multicolumn{5}{|l|}{MANHOLE, NO. 3} \\
\hline \multicolumn{5}{|l|}{Pump Station (Storm)} \\
\hline 0527 Special & 0.00 & EACH & \$5,750.00000 & \$0.00 \\
\hline 0529 Special
Retention basin improvements & 0.00 & LS & \$109,000.00000 & \$0.00 \\
\hline 0533 604E36601 & 2.00 & EACH & \$1,250.00000 & \$2,500.00 \\
\hline
\end{tabular}

Group 0026: Other Drainage Costs
\begin{tabular}{llll}
0078 C-OC-DRNG & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0026: \$0.00
Group 0027: Mainline - Travel Lanes
\begin{tabular}{lrrrr}
0095 & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0494 D-MC-PVMT & \(67,878.00\) & SY & \(\$ 68.00000\) & \(\$ 4,615,704.00\) \\
\hline 3:42:13PM & & & Page 6 of 12
\end{tabular}

Total for Group 0028: \$1,439,152.00

Total for Group 0030: \$1,078,752.00
Group 0031: Ramps (including shoulders)
0122 D-MC-PVMT 1.00 LS
MAJOR COST DRIVERS, PAVEMENT
0497 D-MC-PVMT 33,743.00 SY
13" Reinforced Concrete Pavement
Includes 6" Agg base and Subgrade Compaction
Total for Group 0031: \$2,294,524.00

Total for Group 0032: \$10,028,723.00
Group 0041: Other Pavement Costs
\begin{tabular}{cccc}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & &
\end{tabular}

OTHER COSTS, PAVEMENT

Group 0042: Water Works
\begin{tabular}{lllll}
\hline 0164 & E-MC-WATR & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WATER LINE & & & \(\$ 0.00\) \\
0165 & E-OC-WATR & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

OTHER COSTS, WATER LINE
Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
3:42:13PM
Wednesday, December 01, 2010
\begin{tabular}{llll}
0173 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LIGHTING & & & \\
0499 G-MC-LTNG & 1.00 & EACH & \(\$ 469,000.00000\)
\end{tabular}

Total for Group 0044: \$469,000.00
Group 0045: Lighting - Partial Interchange
0288 G-MC-LTNG \(\quad 0.00\) LS \(\$ 0.00\)

MAJOR COST DRIVERS, LIGHTING
Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway

Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
0178 H-OC-SURV 1.00 LS
\$1,210,022.02000
\$1,210,022.02
Total for Group 0048: \$1,210,022.02
Group 0049: Signs
\begin{tabular}{llll}
0179 J-MC-TRAF & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 0.00\) \\
0501 J-MC-TRAF & 2.03 & MILE & \(\$ 250,000.00000\) \\
Signs & & & Total for Group 0049: \(\$ 507,500.00\)
\end{tabular}

Group 0050: Pavement Marking
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0200 & J-MC-TRAF & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, TRAFFIC CONTROL} \\
\hline 0502 & 644E00100 & 10.98 & MILE & \$3,000.00000 & \$32,940.00 \\
\hline \multicolumn{6}{|c|}{EDGE LINE} \\
\hline 0503 & 644E00200 & 11.91 & MILE & \$2,000.00000 & \$23,820.00 \\
\hline \multicolumn{6}{|c|}{LANE LINE} \\
\hline & & & & otal for Gro & 60.00 \\
\hline
\end{tabular}

\author{
Description Supplemental Description
}

\section*{Group 0051: Other Traffic Control Costs}
\begin{tabular}{lll}
0208 J-OC-TRAF & 1.00 LS & \(\$ 0.00000\) \\
OTHER COSTS, TRAFFIC CONTROL & & Total for Group 0051: \(\$ 0.00\)
\end{tabular}

Group 0052: Signals - Intersections
\begin{tabular}{lllll}
0212 & K-MC-SGNL & 4.00 & LS & \(\$ 175,000.00000\)
\end{tabular}\(\$ 700,000.00\)

MAJOR COST DRIVERS, SIGNALS
Total for Group 0052: \$700,000.00
Group 0053: Other Traffic Signal Costs
\begin{tabular}{lll}
0213 K-OC-SGNL & 1.00 LS & \(\$ 0.00000\) \\
OTHER COSTS, SIGNALS & & Total for Group 0053: \(\$ 0.00\)
\end{tabular}

Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \(\$ 0.00\) \\
\(0215 \quad\) L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{lrrrr}
0216 & M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & \(\$ 0.00\) \\
0504 & M-MC-WALL & \(278,121.00\) & SF & \(\$ 135.00000\)
\end{tabular} Retaining Walls

Group 0056: Other Retaining Wall Costs
0217 M-OC-WALL
OTHER COSTS, RETAINING WALLS
Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0534 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{REMOVAL MISC.:} \\
\hline \multicolumn{6}{|l|}{Radio Tower} \\
\hline 0535 & 202E56101 & 10.00 & EACH & \$7,500.00000 & \$75,000.00 \\
\hline \multicolumn{6}{|l|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|l|}{Small Residential} \\
\hline 0536 & 202E56101 & 4.00 & EACH & \$15,000.00000 & \$60,000.00 \\
\hline \multicolumn{6}{|l|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|l|}{Small Commercial} \\
\hline 0537 & 202E56101 & 5.00 & EACH & \$12,000.00000 & \$60,000.00 \\
\hline BUIL & DING DEMOLI & & & & \\
\hline
\end{tabular}

Description Supplemental Description
\begin{tabular}{lll}
Large Residential & 0.00 & EACH \\
\begin{tabular}{lll}
\(0538 \quad\) 202E56101 \\
BUILDING DEMOLISHED, AS PER PLAN \\
Large Commercial
\end{tabular} & \(\$ 30,000.00000\) \\
& Total for Group 0057: \(\$ 195,000.00\)
\end{tabular}

Group 0058: Noise Barrier
\begin{tabular}{lllll}
0220 & P-MC-NSBR & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, NOISE BARRIER & & & \(\$ 0.00\) \\
0505 & P-MC-NSBR & 0.00 & LS & \(\$ 25.00000\)
\end{tabular}

Total for Group 0058: \$0.00
Group 0059: Other Noise Barrier Costs
\begin{tabular}{lllll}
0221 & P-OC-NSBR & 1.00 & LS & \(\$ 0.00000\) \\
OTHER COSTS, NOISE BARRIER & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

\author{
MAJOR COST DRIVERS, NOISE BARRIER
}

Total for Group 0059: \$0.00

Total for Group 0060: \$50,821,231.00

\section*{Group 0061: Rehabilitated Structures}
\begin{tabular}{llll}
0223 R-MC-STRC & 0.00 & SF & \(\$ 45.00000\) \\
MAJOR COST DRIVERS, STRUCTURES & & & \(\$ 0.00\) \\
& & Total for Group 0061: \(\$ 0.00\)
\end{tabular}

Group 0062: Other Structure Costs
\begin{tabular}{llll}
\begin{tabular}{l}
0224 R-OC-STRC \\
OTHER COSTS, STRUCTURES \\
Contingency
\end{tabular} & 0.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\hline
\end{tabular}

Total for Group 0062: \$0.00
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\) MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
3:42:13PM
Wednesday, December 01, 2010

Group 0064: Portable Concrete Barrier (PCB)
\begin{tabular}{lll}
0226 & S-MC-MNTC & 1.00 LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular} MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Group 0065: Impact Attenuators
\begin{tabular}{ll}
0227 & 1.00 LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC & \(\$ 0.00000\)
\end{tabular}

Group 0066: Sheeting
```

0229 S-MC-MNTC
1.00 LS MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

```
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
\begin{tabular}{lll}
0231 & S-MC-MNTC & 0.00 LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
3:42:13PM
Wednesday, December 01, 2010
\begin{tabular}{lcccc}
0235 & U-MC-MISC & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, MISCELLANEOUS COSTS & & \(\$ 0.00\) \\
0236 & U-OC-MISC & 0.00 & LS & \(\$ 0.00000\) \\
OTHER COSTS, MISCELLANEOUS COSTS & & & & \(\$ 0.00\) \\
023 & \(100 E 00300\) & 1.00 & LS & \(\$ 10,000.00000\) \\
SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE & \\
LIABILITY INSURANCE & & & \(\$ 10,000.00\) \\
0238 & \(623 E 10000\) & 1.00 & LS & \(\$ 611,061.12000\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CONSTRUCTION LAYOUT STAKES
\[
0.5 \%
\] & & 仡 & ,611,061.12000 & +611,061.12 \\
\hline 0239 614E11000 & 1.00 & LS & \$2,444,244.48000 & \$2,444,244.48 \\
\hline MAINTAINING TRAFFIC 5\% & & & & \\
\hline 0240 619E16020 & 65.00 & MNTH & \$2,500.00000 & \$162,500.00 \\
\hline FIELD OFFICE, TYPE C & & & & \\
\hline 0242 624E10000 & 1.00 & LS & \$2,000,000.00000 & \$2,000,000.00 \\
\hline MOBILIZATION & & & & \\
\hline 0511 103E05000 & 1.00 & LS & \$611,061.12000 & \$611,061.12 \\
\hline
\end{tabular} PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND 0.5\%

Total for Group 0072: \(\$ 5,838,866.72\)
Group 0073: Design Contingency Costs
\begin{tabular}{lrrrr}
0243 & V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
\(0244 \quad\) V-OC-CNTG & 1.00 & LS & \(\$ 32,012,772.69000\) & \(\$ 32,012,772.69\) \\
OTHER COSTS, CONTINGENCY COSTS & & & &
\end{tabular}

Total for Group 0073: \$32,012,772.69

\section*{Group 0074: Inflation Contingency}
\begin{tabular}{llll}
0266 \\
OTHER COSTS, CONTINGENCY COSTS & 0.00 & LS & \(\$ 0.00000\)
\end{tabular} OTHER COSTS, CONTINGENCY COSTS

Total for Group 0074: \$0.00
\(\qquad\)
\(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & X & Unit Price & \(=\) & Total Cost \\
\hline Titles & 67 & X & \$400 & = & \$26,800 \\
\hline \begin{tabular}{l}
Appraisal \\
-Simple \\
-Detailed
\end{tabular} & \[
\begin{aligned}
& 12 \\
& 55
\end{aligned}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 9,000 \\
\$ 247,500
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Appraisal Review \\
-Simple \\
-Detailed
\end{tabular} & \[
\begin{aligned}
& 12 \\
& 55
\end{aligned}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 6,000 \\
\$ 110,000
\end{gathered}
\] \\
\hline Negotiations & 67 & x & \$1,100 & = & \$73,700 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{gathered}
0 \\
41 \\
4
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 213,200 \\
\$ 22,400
\end{gathered}
\] \\
\hline Closings & 67 & X & \$400 & = & \$26,800 \\
\hline Project Management & 67 & x & \$550 & \(=\) & \$36,850 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & \(=\) & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$772,250 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpats of projet on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates that involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The acquire the right of way in a timely manner. gures given for the particular project being estimated to reflect local labor costs. It is critical that the alternative, the step in the PDP process and the
person(s) performing the estimate.
Comments
\begin{tabular}{|r|c|}
\hline Total Labor Costs & \(\$ 772,250.00\) \\
\hline Total Non Labor R/W Costs & \(\$ 3,497,458.82\) \\
\hline Inflation Adjustments & \(\$ 350,116.12\) \\
\hline Total R/W Costs & \(\$ 4,619,824.94\) \\
\hline
\end{tabular}

\section*{Estimate Alt E OH cont 6}

Estimated Cost: \(\$ 24,818,545.94\)
Contingency: 57.60\%
Estimated Total: \$39,114,028.40

OH-6 Reconstruction from North of Linn St to Findlay St Base Date: 07/22/10

Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlr}
0001 A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & \(72,055.00\) & SY & \(\$ 8.00000\)
\end{tabular}

\section*{PAVEMENT REMOVED}

Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrllr}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{l}
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & & & & \\
\begin{tabular}{l}
0344 203E10000 \\
EXCAVATION
\end{tabular} & \(121,755.00\) & CY & \(\$ 8.00000\) & \(\$ 974,040.00\)
\end{tabular}

Total for Group 0003: \$974,040.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
& & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 730,530.00\)
\end{tabular}

Total for Group 0005: \$730,530.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & & \\
\begin{tabular}{l}
O347 205E10300 \\
LIME
\end{tabular} & & & \(\$ 5.00000\)
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\) MAJOR COST DRIVERS, ROADWAY

Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{crrrr}
0012 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 544,830.00\) \\
0465 & \(422 E 10060\) & \(4,953.00\) & FT & \(\$ 110.00000\) \\
\(4: 07: 47\) PM & & & & Page 2 of 12
\end{tabular}

Total for Group 0008: \(\$ 544,830.00\)
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement
0016 A-MC-RDWY
\begin{tabular}{ll}
93,609.00 SY & \\
SY
\end{tabular}

Total for Group 0010: \(\$ 234,022.50\)

Group 0011: Subgrade Treatment - Undercut \& Backfill
\begin{tabular}{llll}
0017 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0011: \$0.00

\section*{Group 0012: Other Roadway Costs}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
0019 A-OC-RDWY \\
OTHER COSTS, ROADWAY Contingency
\end{tabular} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, } 30 \text { SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, 48" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \begin{tabular}{l}
\[
0026 \text { 202E11000 }
\] \\
STRUCTURE REMOVED
\end{tabular} & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER } 24 "
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \begin{tabular}{l}
\[
0029 \quad 202 \mathrm{E} 38000
\] \\
GUARDRAIL REMOVED
\end{tabular} & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \text { 202E58100 } \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0033 \text { 202E75000 } \\
& \text { FENCE REMOVED }
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

2,291.00 FT \(\$ 14.00000\)

Line \# Item Number

\section*{Description Supplemental Description}

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000
SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000 GUARDRAIL, TYPE 5
0038 606E22000 ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EACH IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 0.00 CY AGGREGATE BASE For Fencing ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500 GATE, TYPE 47 For Fencing
0426 625E32000 GROUND ROD For Fencing
0466
0.00 EACH
0.0
0.00 EA
\begin{tabular}{lll}
0.00 SY & \(\$ 0.81000\) & \(\$ 0.00\) \\
0.00 FT & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}
\$32,074.00
\$1,411.29597
\(\$ 0.00\)
\(0.00 \mathrm{EACH} \quad \$ 1,712.52574\)
\(\$ 0.00\)
0.00 EACH \$487.23435
\(\$ 0.00\)
0.00 EACH \(\$ 969.12750 \quad \$ 0.00\)
\(\$ 969.12750\)
\(\$ 0.00\)
0.00 EACH
\$338.36354
\(\$ 0.00\)
\$3,439.05897
\(\$ 0.00\)
\(\$ 0.00000\)
\(\$ 0.00\)

Group 0014: Seeding \& Mulching / Sodding
\begin{tabular}{lrlll}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & \(659 E 10000\) & 0.00 & SY & \(\$ 1.00000\) \\
SEEDING AND MULCHING & 0.00 & SY & \(\$ 15.00000\) & \(\$ 0.00\) \\
\(0531 \quad 660 E 25000\) & & & \(\$ 0.00\)
\end{tabular} SODDING STAKED

Total for Group 0014: \$0.00
Group 0015: Rock Channel Protection
\begin{tabular}{lrlrl}
0047 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY & \(\$ 75.00000\)
\end{tabular} ROCK CHANNEL PROTECTION, TYPE A WITH FILTER

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
\(\$ 0.00000\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 50,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & & \(\$ 50,000.00\) \\
\(0471832 E 20000\) & \(35,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$85,000.00
\(\left.\begin{array}{llll}\begin{array}{c}\text { Group 0017: Other Erosion Control Costs } \\ \text { 0049 670E00700 } \\ \text { DITCH EROSION PROTECTION }\end{array} & 0.00 & \text { SY } & \\ \begin{array}{c}\text { 0050 B-OC-ERCO } \\ \text { OTHER COSTS, EROSION CONTROL }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrrr}
0059 & 1.00 & LS & \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00000\) \\
\(0062 \quad\) 605E05100 & \(51,204.00\) & FT & \(\$ 0.00000\)
\end{tabular}

Total for Group 0018: \$409,632.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\) \(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}\) MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
\(\$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
\begin{tabular}{l}
0067 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{l}
0476 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 0.00 & FT & \(\$ 550.00000\) \\
4:07:47PM & & & \\
Wednesday, December 01, 2010 & & & \(\$ 0.00\) \\
\hline
\end{tabular}

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
\begin{tabular}{llll}
0477 C-MC-DRNG & 0.00 & EACH & \(\$ 1,500.00000\)
\end{tabular}\(\$ \$ 0.00\)

Concrete - Headwalls/wingwalls
Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH \$1,500.00000
\(\$ 0.00\)
MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

\section*{MAJOR COST DRIVERS, DRAINAGE}

Total for Group 0024: \$0.00

\section*{Group 0025: Closed Storm System}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
0077 \\
\text { MA }
\end{array}
\] & C-MC-DRNG JOR COST DRI & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline 0489 & 603E13400 & 7,258.00 & FT & \$75.00000 & \$544,350.00 \\
\hline \multicolumn{6}{|c|}{30" CONDUIT, TYPE B (Average size)} \\
\hline 0523 & 604E00800 & 70.00 & EACH & \$1,500.00000 & \$105,000.00 \\
\hline \multicolumn{6}{|r|}{CATCH BASIN, NO. 3A} \\
\hline 0524 & 604 E 31500 & 7.00 & EACH & \$3,000.00000 & \$21,000.00 \\
\hline \multicolumn{6}{|c|}{MANHOLE, NO. 3} \\
\hline 0525 & 604E36601 & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|r|}{PRECAST REINFORCED CONCRETE OUTLET, AS PER PLAN} \\
\hline 0526 & Special & 0.00 & LS & \$6,400,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{Pump Station (Storm)} \\
\hline 0527 & Special & 0.00 & EACH & \$5,750.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{Stormceptors} \\
\hline 0529 & Special & 0.00 & LS & \$109,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{Retention basin improvements} \\
\hline
\end{tabular}

Total for Group 0025: \$670,350.00

\section*{Group 0026: Other Drainage Costs}

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{crrr}
\hline 0095 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0494 D-MC-PVMT & \(68,710.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & \\
Includes 6" Agg Base and Subgrade Compaction & & \(\$ 4,672,280.00\) \\
\(4: 07: 47 P M\) & & Page 6 of 12
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{lrrr}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0495 & D-MC-PVMT & \(11,609.00\) & SY \\
13" Reinforced Concrete Pavement & & \(\$ 68.00000\) & \(\$ 789,412.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$789,412.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lrrr}
0115 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0496 D-MC-PVMT & \(13,290.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 903,720.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0030: \$903,720.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{llll}
0122 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0497 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0031: \$0.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lllll}
0132 D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$0.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{rrrr}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0041: \$0.00
\(\left.\begin{array}{lllll}\text { Group 0042: Water Works } \\ \begin{array}{l}0164 \text { E-MC-WATR } \\ \text { MAJOR COST DRIVERS, WATER LINE }\end{array} & 0.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ 0.00\)

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

4:07:47PM
Wednesday, December 01, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
0173 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, LIGHTING & 0.00 & EACH & \(\$ 469,000.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0044: \$0.00
Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 & G-MC-LTNG & 0.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

Total for Group 0045: \$0.00
\begin{tabular}{lrrl}
Group 0046: Lighting - Continuous Roadway & \\
0176 G-MC-LTNG & 1.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LIGHTING & & & \(\$ 138.00000\) \\
\begin{tabular}{l}
0500 G-MC-LTNG \\
Lighting - Continuous
\end{tabular} & 0.00 & FT & \(\$ 0.00\)
\end{tabular}

Total for Group 0046: \$0.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG \(\quad 4,276.00\) LS \(\$ 35.00000 \quad \$ 149,660.00\)

Total for Group 0047: \$149,660.00
Group 0048: Traffic Surveillance
\begin{tabular}{lllll}
0178 & 1.00 & LS -OC-SURV & \(\$ 185,954.41000\) & \(\$ 185,954.41\) \\
OTHER COSTS, TRAFFIC SURVEILLANCE & & &
\end{tabular}

Total for Group 0048: \$185,954.41
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \mathrm{O}\)
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 0.81 Signs
\$250,000.00000
\$202,500.00
Total for Group 0049: \$202,500.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 & 1.00 & LS & & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 0.00\) \\
0502 & 4.88 & MILE & \(\$ 3,000.00000\) & \(\$ 14,640.00\) \\
EDGE LINE & & & & \(\$ 12,940.00\)
\end{tabular}

Total for Group 0050: \$27,580.00
Group 0051: Other Traffic Control Costs

4:07:47PM
Wednesday, December 01, 2010
\begin{tabular}{llll}
0208 & J-OC-TRAF & 1.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

Total for Group 0051: \$0.00
Group 0052: Signals - Intersections

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \(\$ 0.00\) \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{llll}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & \(\$ 0.00\) \\
0504 M-MC-WALL & \(7,780.00\) & SF & \(\$ 135.00000\)
\end{tabular}

Total for Group 0055: \$1,050,300.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0532 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{REMOVAL MISC.:} \\
\hline \multicolumn{6}{|c|}{Radio Tower} \\
\hline 0533 & 202E56101 & 0.00 & EACH & \$7,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Residential} \\
\hline 0534 & 202E56101 & 0.00 & EACH & \$15,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Commercial} \\
\hline 0535 & 202E56101 & 0.00 & EACH & \$12,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Large Residential} \\
\hline 0536 & 202E56101 & 0.00 & EACH & \$30,000.00000 & \$0.00 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
0220 & P-MC-NSBR & 1.00 & LS \\
MAJOR COST DRIVERS, NOISE BARRIER & \(\$ 0.00000\) & \(\$ 0.00\) \\
0505 P-MC-NSBR & \(40,012.00\) & SF & \(\$ 25.00000\)
\end{tabular}

Total for Group 0058: \$1,000,300.00
\begin{tabular}{ccccc}
Group 0059: Other Noise Barrier Costs & & & \\
\begin{tabular}{cccc}
022 & P-OC-NSBR \\
OTHER COSTS, NOISE BARRIER & 1.00 & LS & \(\$ 0.00000\) \\
O368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\hline
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \$5,137,770.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs

0224 R-OC-STRC
OTHER COSTS, STRUCTURES Contingency
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0062: \(\$ 0.00\)

Group 0063: Temporary Road and Pavement Costs
\begin{tabular}{ll}
0225 S-MC-MNTC & 1.00 LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\end{tabular}
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \(\$ 0.00\)
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lrlrl}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.81 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 0.81 & \text { MILE } & \$ 500,000.00000\end{array}\) OTHER COSTS, MANTENANCE OF TRAFFIC

Group 0071: Wetland Construction
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0234 & T-MC-WTLD & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, WETLAND CONSTRUCTION} \\
\hline 0360 & T-MC-WTLD & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline & OR COST DR & RUCT & & & \\
\hline
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
4:07:47PM
Wednesday, December 01, 2010

Line \# Item Number
Description

Unit Price
\begin{tabular}{lllll}
0235 & U-MC-MISC & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, MISCELLANEOUS COSTS & & \(\$ 0.00\) \\
\(0236 \quad\) U-OC-MISC & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, MISCELLANEOUS COSTS & & & & \(\$ 0.00\)
\end{tabular} SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE
0238 623E10000 \(\quad 1.00 \mathrm{LS} \quad \$ 93,906.97000 \quad \$ 93,906.97\)
 CONSTRUCTION LAYOUT STAKES
 0.5\%
0239 614E11000 \(\quad 1.00 \mathrm{LS} \quad \$ 375,627.90000 \quad \$ 375,627.90\)
 MAINTAINING TRAFFIC
 2\%
\begin{tabular}{lllll}
0240 & 619E16020 & 44.00 & MNTH & \(\$ 2,500.00000\) \\
FIELD OFFICE, TYPE C & 1.00 & LS & \(\$ 110,000.00\) \\
0242 & \(624 E 10000\) & \(\$ 400,000.00000\) & \(\$ 400,000.00\)
\end{tabular}
 MOBILIZATION
0511 103E05000 1.00 LS \$93,906.97000 \$93,906.97
 PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND
 0.5\%
\begin{tabular}{llll}
0518 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0519 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0520 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0521 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
& & Total for Group 0072: \(\$ 1,073,441.84\)
\end{tabular}

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrrr}
0243 V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
\(0244 \quad\) V-OC-CNTG & 1.00 & LS & \(\$ 4,963,709.19000\) \\
OTHER COSTS, CONTINGENCY COSTS & & & \(\$ 4,963,709.19\) \\
\(25 \%\) & & &
\end{tabular}

Total for Group 0073: \$4,963,709.19

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
\(\$ 0.00000\)
Total for Group 0074: \$0.00

\section*{Estimate Alt E OH cont 7}

Estimated Cost: \(\$ 411,459,793.70\)
Contingency: 57.60\%
Estimated Total: \$648,460,634.87

OH-7 Reconstruction of the New Bridge over the Ohio to North of Linn St
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0343 & 202E23000 & \(117,932.00\) & SY & \(\$ 8.00000\)
\end{tabular}

Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrllr}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0003: \$1,549,888.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
0006 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0345 & 203E20000 & \(197,488.00\) & CY & \(\$ 6.00000\)
\end{tabular}

Total for Group 0005: \(\$ 1,184,928.00\)
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{lllll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 7.00000\) & \(\$ 0.00\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & CY & \(\$ 0.00\) \\
\begin{tabular}{l}
0347 205E10300 \\
LIME
\end{tabular} & 0.00 & TON & \(\$ 5.00000\) &
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow

0011 A-MC-RDWY MAJOR COST DRIVERS, ROADWAY

3,752.00 CY
\(\$ 8.00000\)
\$30,016.00
Total for Group 0007: \(\$ 30,016.00\)

Group 0008: Concrete Barrier
\begin{tabular}{lrrrr}
\hline 0012 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 110.00000\) & \(\$ 1,227,050.00\) \\
0465 622E10060 & \(11,155.00\) & FT & & Page 2 of 12
\end{tabular}

\author{
CONCRETE BARRIER, SINGLE SLOPE, TYPE B
}

Total for Group 0008: \$1,227,050.00
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement
0016 A-MC-RDWY
122,406.00 SY

Total for Group 0010: \$306,015.00
Group 0011: Subgrade Treatment - Undercut \& Backfill
\begin{tabular}{llll}
0017 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0011: \$0.00

\section*{Group 0012: Other Roadway Costs}
\begin{tabular}{|c|c|c|c|c|}
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline 0020 201E11000 & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{CLEARING AND GRUBBING} \\
\hline 0021 201E21800 & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{TREE REMOVED, 18" SIZE} \\
\hline 0022 201E23000 & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{TREE REMOVED, 30" SIZE} \\
\hline 0023 201E24800 & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{TREE REMOVED, 48" SIZE} \\
\hline 0026 202E11000 & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{STRUCTURE REMOVED} \\
\hline 0028 202E35200 & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{PIPE REMOVED, OVER 24"} \\
\hline 0029 202E38000 & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{GUARDRAIL REMOVED} \\
\hline 0030 202E42206 & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{ANCHOR ASSEMBLY REMOVED} \\
\hline 0031 202E58000 & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{MANHOLE REMOVED} \\
\hline 0032 202E58100 & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{CATCH BASIN REMOVED} \\
\hline 0033 202E75000 & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline FENCE REMOVED & & & & \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

Line \# Item Number

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000 SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
GUARDRAIL, TYPE 5
0038 606E22000 ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EACH IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 0.00 CY AGGREGATE BASE For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\(\$ 731.31641\)
\(\$ 0.00\) GATE, TYPE 47 For Fencing
0426 625E32000 GROUND ROD For Fencing
0466

\section*{Description \\ Description}

\section*{Group 0014: Seeding \& Mulching / Sodding}
\begin{tabular}{lrlrr}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & 659E10000 \\
SEEDING AND MULCHING & \(35,073.00\) & SY & \(\$ 1.00000\) & \(\$ 35,073.00\) \\
0531 & \(660 E 25000\) & 0.00 & SY & \(\$ 15.00000\)
\end{tabular}\(\$ \$ 0.00\)

Total for Group 0014: \(\$ 35,073.00\)

\section*{Group 0015: Rock Channel Protection}
\begin{tabular}{lrlrl}
0047 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY & \(\$ 75.00000\)
\end{tabular} ROCK CHANNEL PROTECTION, TYPE A WITH FILTER

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
\(\$ 0.00000\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 50,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & \(\$ 50,000.00\) \\
\(0471 \quad 832 E 20000\) & \(42,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$92,000.00
\(\left.\begin{array}{llll}\begin{array}{c}\text { Group 0017: Other Erosion Control Costs } \\ \text { 0049 670E00700 } \\ \text { DITCH EROSION PROTECTION }\end{array} & 0.00 & \text { SY } & \\ \begin{array}{c}\text { 0050 B-OC-ERCO } \\ \text { OTHER COSTS, EROSION CONTROL }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0017: \$0.00
\begin{tabular}{lrrrr}
Group 0018: Underdrains & & & \\
\begin{tabular}{c}
0059 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) \\
0062 605E05100 \\
4" SHALLOW PIPE UNDERDRAINS & \(75,225.00\) & FT & \(\$ 8.00000\) & \(\$ 0.00\) \\
\end{tabular}

Total for Group 0018: \$601,800.00

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{ccccc}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00\) \\
0476 C-MC-DRNG & 0.00 & FT & \(\$ 550.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & & Page 5 of 12
\end{tabular}

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
```

0477 C-MC-DRNG 0.00 EACH
MAJOR COST DRIVERS, DRAINAGE
Concrete - Headwalls/wingwalls

```

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH
\(\$ 1,500.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, DRAINAGE
Concrete Masonry
Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00

\section*{Group 0025: Closed Storm System}

Total for Group 0025: \$1,153,050.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{lrrr}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0495 D-MC-PVMT & \(8,453.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 574,804.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$574,804.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lrrr}
0115 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0496 D-MC-PVMT & \(8,932.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 607,376.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0030: \(\$ 607,376.00\)
Group 0031: Ramps (including shoulders)
\begin{tabular}{lrrr}
0122 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0497 & D-MC-PVMT & \(29,120.00\) & SY \\
13" Reinforced Concrete Pavement & & \(\$ 68.00000\) & \(\$ 1,980,160.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0031: \$1,980,160.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlll}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & \(36,641.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction

Total for Group 0032: \$1,502,281.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{llll}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & & &
\end{tabular}

Total for Group 0041: \$0.00
\(\left.\begin{array}{lllll}\text { Group 0042: Water Works } \\ \begin{array}{c}0164 \text { E-MC-WATR } \\ \text { MAJOR COST DRIVERS, WATER LINE }\end{array} & 0.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

4:27:11PM
Wednesday, December 01, 2010

Total for Group 0043: \$0.00
Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
\begin{tabular}{c}
0173 \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
0499 & G-MC-LTNG & 3.00 & EACH & \(\$ 469,000.00000\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 G-MC-LTNG & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG \(17,952.00\) FT
Lighting - Continuous
\(\$ 0.00000\)
\(\$ 0.00\)
\(\$ 35.00000\)
\$628,320.00
Total for Group 0046: \$628,320.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \$0.00

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
0178 H-OC-SURV 1.00 LS
OTHER COSTS, TRAFFIC SURVEILLANCE
\$3,143,783.86000
\$3,143,783.86
Total for Group 0048: \$3,143,783.86
Group 0049: Signs
0179 J-MC-TRAF 1.00 LS \$0.00000
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF
3.40 MILE
\$250,000.00000
\$850,000.00
Signs
Total for Group 0049: \$850,000.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 & 1.00 & LS & & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 0.00\) \\
0502 & 16.60 & MILE & \(\$ 3,000.00000\) & \(\$ 49,800.00\) \\
EDGE LINE & & & & \(\$ 25,000.00\)
\end{tabular}

\section*{Group 0051: Other Traffic Control Costs}
\begin{tabular}{llll}
0208 J-OC-TRAF & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

OTHER COSTS, TRAFFIC CONTROL Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{lccc}
\begin{tabular}{c}
O212 K-MC-SGNL \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular} & 6.50 & EACH & \begin{tabular}{c}
\(\$ 175,000.00000\) \\
Total for Group 0052:
\end{tabular} \\
& & & \(\$ 1,137,500.00\)
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{llllr}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & & \(\$ 5,218,425.00\)
\end{tabular}

Total for Group 0055: \$5,218,425.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition

Group 0058: Noise Barrier
\begin{tabular}{llll}
0220 & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, NOISE BARRIER & & & \(\$ 0.00\) \\
0505 P-MC-NSBR & 0.00 & LS & \(\$ 25.00000\)
\end{tabular}

Total for Group 0058: \$0.00
\begin{tabular}{ccccc}
Group 0059: Other Noise Barrier Costs & & \\
\begin{tabular}{c}
022 \\
OTHER COC-NSBR
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
O368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0059: \$0.00

Tier 3 Structures 50' to 75' Height

Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
MAJOR COST DRIVERS, STRUCTURES
\(\$ 45.00000\)
\(\$ 0.00\)
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
OTHER COSTS, STRUCTURES
Contingency
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0060: \$288,624,314.00

Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)
0226 S-MC-MNTC 1.00 LS \(\$ 0.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators

0227 S-MC-MNTC 1.00 LS

\(\$ 0.00000\)

\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00000 \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\$0.00
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lrlrl}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 3.40 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 3.40 & \text { MILE } & \$ 500,000.00000\end{array}\)
Total for Group 0070: \$1,700,000.00
Group 0071: Wetland Construction
\begin{tabular}{lcc}
0234 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & & \(\$ 0.00\) \\
0360 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs

\section*{Description Supplemental Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0235 & U-MC-MISC & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, MISCELLANEOUS COSTS} \\
\hline 0236 & U-OC-MISC & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, MISCELLANEOUS COSTS} \\
\hline 0237 & 100E00300 & 1.00 & LS & \$10,000.00000 & \$10,000.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE} \\
\hline 0238 & 623E10000 & 1.00 & LS & \$1,587,610.85000 & \$1,587,610.85 \\
\hline \multicolumn{6}{|c|}{CONSTRUCTION LAYOUT STAKES} \\
\hline 0239 & 614E11000 & 1.00 & LS & \$6,350,443.40000 & \$6,350,443.40 \\
\hline \multicolumn{6}{|c|}{MAINTAINING TRAFFIC} \\
\hline 0240 & 619E16020 & 44.00 & MNTH & \$2,500.00000 & \$110,000.00 \\
\hline \multicolumn{6}{|c|}{FIELD OFFICE, TYPE C} \\
\hline 0242 & 624E10000 & 1.00 & LS & \$2,000,000.00000 & \$2,000,000.00 \\
\hline \multicolumn{6}{|c|}{MOBILIZATION} \\
\hline 0511 & 103E05000 & 1.00 & LS & \$1,587,610.85000 & \$1,587,610.85 \\
\hline \multicolumn{6}{|c|}{PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND} \\
\hline
\end{tabular}

Total for Group 0072: \$11,645,665.10
Group 0073: Design Contingency Costs
\begin{tabular}{lrrr}
0243 V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 82,291,958.74000\) \\
OTHER COSTS, CONTINGENCY COSTS & & & \(\$ 82,291,958.74\) \\
\(25 \%\) & & &
\end{tabular}

Total for Group 0073: \$82,291,958.74

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
\(\$ 0.00000\)
Total for Group 0074: \$0.00
\(\qquad\)
\(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & X & Unit Price & = & Total Cost \\
\hline Titles & 26 & X & \$400 & = & \$10,400 \\
\hline \begin{tabular}{l}
Appraisal \\
-Simple \\
-Detailed
\end{tabular} & \[
\begin{gathered}
3 \\
23
\end{gathered}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 2,250 \\
\$ 103,500
\end{gathered}
\] \\
\hline Appraisal Review -Simple -Detailed & \[
\begin{gathered}
3 \\
23
\end{gathered}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \(=\) & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 46,000
\end{aligned}
\] \\
\hline Negotiations & 26 & x & \$1,100 & = & \$28,600 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{gathered}
0 \\
0 \\
25
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\)
\(=\)
\(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 0 \\
\$ 140,000
\end{gathered}
\] \\
\hline Closings & 26 & x & \$400 & = & \$10,400 \\
\hline Project Management & 26 & x & \$550 & \(=\) & \$14,300 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & \(=\) & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$356,950 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data
Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpats of project on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates hat involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The acquire the right of way in a timely manner. The figures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternative, the step in the PDP process and the alternative, the step in the PDP process and
\begin{tabular}{|r|c|}
\hline Total Labor Costs & \(\$ 356,950.00\) \\
\hline Total Non Labor R/W Costs & \(\$ 12,058,757.69\) \\
\hline Inflation Adjustments & \(\$ 1,018,088.03\) \\
\hline Total R/W Costs & \(\$ 13,433,795.72\) \\
\hline
\end{tabular}

Comments
Cost/Unit were generated from auditors tax card data

\title{
Estimate Alt I KY cont 2
}

Estimated Cost: \$7,209,761.51
Contingency: 46.50\%
Estimated Total: \$10,562,300.61

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(2,373.00\) & SY & \(\$ 8.00000\)
\end{tabular}

PAVEMENT REMOVED

Group 0002: Excavation - Rock
0003 A-MC-RDWY \(\quad 1,104.00 \mathrm{CY} \quad \$ 30.00000 \quad \$ 33,120.00\)

MAJOR COST DRIVERS, ROADWAY
Total for Group 0002: \$33,120.00
Group 0003: Excavation - Soil
0004 A-MC-RDWY 1.00 LS \$0.00000 \$0.00
\(\begin{array}{llll}\text { MAJOR COST DRIVERS, ROADWAY } & 9,936.00 \mathrm{CY} & \$ 8.00000 & \$ 79,488.00\end{array}\) EXCAVATION

Total for Group 0003: \$79,488.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
& & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 66,240.00\) \\
0345 203E20000 & \(11,040.00\) & CY & \(\$ 6.00000\) &
\end{tabular}

Total for Group 0005: \$66,240.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
\begin{tabular}{llll}
0010 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0347 205E10300 \\
LIME
\end{tabular} & 0.00 & TON & \(\$ 0.00\) \\
\hline
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{llll}
0012 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0465 622E10060 & 0.00 & FT & \(\$ 110.00000\) \\
\(7: 22: 04 A M\) & & & \\
Thursday, December 02, 2010 & & & \(\$ 0.00\) \\
\hline
\end{tabular}

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00

Total for Group 0009: \$0.00
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Group 0010: Subgrade Treatment - Cement} \\
\hline \multirow[t]{2}{*}{0016 A-MC-RDWY MAJOR COST DRIVERS, ROADWAY} & 3,309.00 SY & \$2.50000 & \$8,272.50 \\
\hline & & \multicolumn{2}{|l|}{Total for Group 0010: \$8,272.50} \\
\hline \multicolumn{4}{|l|}{Group 0011: Subgrade Treatment - Undercut \& Backfill} \\
\hline \begin{tabular}{l}
0017 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0011: \$0.00
\begin{tabular}{|c|c|c|c|c|}
\hline Group 0012: Other Roadway Costs & & & & \\
\hline \begin{tabular}{l}
0019 A-OC-RDWY \\
OTHER COSTS, ROADWAY \\
Contingency
\end{tabular} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 " \text { SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, 30" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, } 48 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0026 \text { 202E11000 } \\
& \text { STRUCTURE REMOVED }
\end{aligned}
\] & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER 24" }
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0029 \text { 202E38000 } \\
& \text { GUARDRAIL REMOVED }
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \quad 202 E 58100 \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{gathered}
0033 \text { 202E75000 } \\
\text { FENCE REMOVED }
\end{gathered}
\] & 0.00 & FT & & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

Line \# Item Number

Supplemental Description
PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000 0.00 FT
\(\$ 0.81000\)
\(\$ 0.00\)

SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
0.00 FT \(\$ 14.00000 \$ \$ 0.00\)

GUARDRAIL, TYPE 5
0038 606E22000
0.00 EACH \$0.00

ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 0.00 EACH \(\quad \$ 0.00\)
ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 0.00 EACH
\(\$ 0.00\)
ANCHOR ASSEMBLY, TYPE T
\(0041606 \mathrm{E} 35000 \mathrm{0.00} \mathrm{EACH} \quad \$ 0.00\) BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 \(0.00 \mathrm{EACH} \quad \$ 0.00\) IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
\(\$ 0.00\)
AGGREGATE BASE
For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\(\$ 0.00\)
GATE, TYPE 47
For Fencing
0426 625E32000 0.00 EACH \(\quad \$ 0.00\) GROUND ROD For Fencing
0466
\(\$ 0.00000\)
Total for Group 0012: \$0.00

Group 0014: Seeding \& Mulching / Sodding
\begin{tabular}{lrlrl}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & \(1,328.00\) & SY & \(\$ 1.00000\) & \(\$ 1,328.00\) \\
SEEDING AND MULCHING & & & & \(\$ 0.00\)
\end{tabular}

\section*{Group 0015: Rock Channel Protection}
\begin{tabular}{lrrr}
0047 & B-MC-ERCO & 1.00 & LS \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 24.00 & CY
\end{tabular}

Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO \(\quad 1.00\) LS \(\$ 0.00000 \quad \$ 0.00\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 20,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & & \(\$ 20,000.00\) \\
\(0471 \quad 832 E 20000\) & \(3,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$23,000.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0017: Other Erosion Control Costs} \\
\hline \begin{tabular}{l}
0049 670E00700 \\
DITCH EROSION PROTECTION
\end{tabular} & 0.00 & SY & & \$0.00 \\
\hline 0050 B-OC-ERCO
OTHER COSTS, EROSION CONTROL & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0051 \text { 659E00100 } \\
& \text { SOIL ANALYSIS TEST }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline 0052 659E00300
TOPSOIL & 0.00 & CY & & \$0.00 \\
\hline \[
\begin{aligned}
& 0053 \text { 659E14000 } \\
& \text { REPAIR SEEDING AND MULCHING }
\end{aligned}
\] & 0.00 & SY & & \$0.00 \\
\hline 0054 659E15000
INTER-SEEDING & 0.00 & SY & \$0.71000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0055 \text { 659E20000 } \\
& \text { COMMERCIAL FERTILIZER }
\end{aligned}
\] & 0.00 & TON & & \$0.00 \\
\hline 0056 LIME 659 E31000
Lichen & 0.00 & ACRE & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0057 \text { 659E35000 } \\
& \text { WATER }
\end{aligned}
\] & 0.00 & MGAL & \$5.00000 & \$0.00 \\
\hline 0058 659E40000
MOWING & 0.00 & MSF & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrrr}
0059 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
\(0062 \quad\) 605E05100 & \(1,223.00\) & FT & \(\$ 8.00000\) \\
4" SHALLOW PIPE UNDERDRAINS & & & \(\$ 9,784.00\)
\end{tabular}

Total for Group 0018: \$9,784.00

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00\) \\
0476 C-MC-DRNG & 0.00 & FT & \(\$ 550.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
\(7: 22: 04 A M\) & & & \(\$ 0.00\) \\
Thursday, December 02,2010 & & & Page 5 of 12
\end{tabular}

Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
```

0477 C-MC-DRNG 0.00 EACH
MAJOR COST DRIVERS, DRAINAGE
Concrete - Headwalls/wingwalls

```

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH

MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 & C-MC-DRNG & 1.00 & LS
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
Group 0025: Closed Storm System
\begin{tabular}{lrlrr}
0077 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular}\(\quad 190.00\) FT \(\quad \$ 0.00\)

Total for Group 0025: \$22,750.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
1.00 LS
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{llll}
0095 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0494 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg Base and Subgrade Compaction & &
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{llll}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lllll}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{llll}
0122 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0497 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0031: \$0.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0498 & \(3,309.00\) & SY & \(\$ 41.00000\) & \(\$ 135,669.00\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$135,669.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{rrrr}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & &
\end{tabular}

Total for Group 0041: \$0.00
Group 0042: Water Works
\begin{tabular}{llll}
0164 E-MC-WATR & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WATER LINE & & & \\
0165 E-OC-WATR & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:22:04AM
Thursday, December 02, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
\begin{tabular}{l}
0173 \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
0499 & G-MC-LTNG & 0.00 & EACH & \(\$ 469,000.00000\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 & G-MC-LTNG & 0.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG \(1,510.00\) FT
Lighting - Continuous
Total for Group 0046: \$52,850.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\)

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
```

0178 H-OC-SURV 0.00 LS
$\$ 0.00000$
$\$ 0.00$

```

OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$0.00
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS}\) \$0.00000 \$0.00
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF
0.29 MILE
\$250,000.00000
\(\$ 72,500.00\)
Signs
Total for Group 0049: \$72,500.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 & 1.00 & LS & & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 0.00\) \\
0502 & 0.11 & MILE & \(\$ 3,000.00000\) & \(\$ 330.00\) \\
EDGE LINE & 0.16 & MILE & \(\$ 2,000.00000\) & \(\$ 320.00\)
\end{tabular}

Total for Group 0050: \$650.00
Group 0051: Other Traffic Control Costs

7:22:04AM
Thursday, December 02, 2010

Description
Supplemental Description
\begin{tabular}{llll}
0208 J-OC-TRAF & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{lccc}
\begin{tabular}{l}
0212 \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular} & 2.00 EACH & \(\$ 175,000.00000\) & \(\$ 350,000.00\) \\
& & Total for Group 0052: \(\$ 350,000.00\) \\
Group 0053: Other Traffic Signal Costs \\
\begin{tabular}{l}
0213 K-OC-SGNL \\
OTHER COSTS, SIGNALS
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{lllll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
0216 M-MC-WALL 1.00 LS \$0.00000 \$0.00

MAJOR COST DRIVERS, RETAINING WALLS
0504 M-MC-WALL
0.00 SF
\(\$ 135.00000\)
\(\$ 0.00\)
Retaining Walls
Total for Group 0055: \$0.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0533 & 202E56101 & 0.00 & EACH & \$30,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0534 & 202E56101 & 0.00 & EACH & \$15,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0535 & 202E56101 & 0.00 & EACH & \$12,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0536 & 202E56101 & 0.00 & EACH & \$7,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Residential} \\
\hline 0537 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0057: \$0.00
Group 0058: Noise Barrier
\begin{tabular}{llll}
0220 P-MC-NSBR & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, NOISE BARRIER & & & \(\$ 0.00\) \\
0505 P-MC-NSBR & 0.00 & LS & \(\$ 400.00000\)
\end{tabular}

Total for Group 0058: \$0.00
\begin{tabular}{ccccc}
Group 0059: Other Noise Barrier Costs & & \\
\begin{tabular}{c}
022 \\
OTHER COC-NSBR
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
O368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \(\$ 4,338,088.00\)
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \(\$ 0.00\)
Group 0063: Temporary Road and Pavement Costs
\begin{tabular}{cc}
0225 S-MC-MNTC & \(1.00 \quad \mathrm{LS}\) \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\end{tabular}

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators

Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lllll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.29 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 0.29 & \text { MILE } & \$ 500,000.00000\end{array}\) OTHER COSTS, MAINTENANCE OF TRAFFIC

Total for Group 0070: \$145,000.00
Group 0071: Wetland Construction
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0234 & T-MC-WTLD & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, WETLAND CONSTRUCTION} \\
\hline \multicolumn{2}{|l|}{0360 T-MC-WTID 0.00 LS} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{MAJOR COST DRIVERS, WETLAND CONSTRUCTION} \\
\hline
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:22:04AM
Thursday, December 02, 2010

Line \# Item Number
Description Supplemental Description

Unit Price
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0235 & U-MC-MISC & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, MISCELLANEOUS COSTS} \\
\hline 0236 & U-OC-MISC & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, MISCELLANEOUS COSTS} \\
\hline 0237 & 100E00300 & 0.00 & LS & \$10,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE} \\
\hline 0238 & 623E10000 & 1.00 & LS & \$26,797.62000 & \$26,797.62 \\
\hline \multicolumn{6}{|c|}{CONSTRUCTION LAYOUT STAKES} \\
\hline 0239 & 614E11000 & 1.00 & LS & \$107,190.47000 & \$107,190.47 \\
\hline \multicolumn{6}{|c|}{MAINTAINING TRAFFIC} \\
\hline \multicolumn{6}{|l|}{2\%} \\
\hline 0240 & 619E16020 & 19.00 & MNTH & \$2,500.00000 & \$47,500.00 \\
\hline \multicolumn{6}{|c|}{FIELD OFFICE, TYPE C} \\
\hline 0242 & 624E10000 & 1.00 & LS & \$200,000.00000 & \$200,000.00 \\
\hline \multicolumn{6}{|c|}{MOBILIZATION} \\
\hline 0511 & 103E05000 & 1.00 & LS & \$26,797.62000 & \$26,797.62 \\
\hline \multicolumn{6}{|r|}{PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND} \\
\hline 0.5 & & & & & \\
\hline 0518 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline 0519 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline 0520 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline 0521 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline 0532 & & 0.00 & & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Group 0073: Design Contingency Costs
\begin{tabular}{lrrrr}
0243 & V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 1,441,952.30000\) & \(\$ 1,441,952.30\) \\
OTHER COSTS, CONTINGENCY COSTS & & & &
\end{tabular}

Total for Group 0073: \$1,441,952.30

\section*{Group 0074: Inflation Contingency}
\begin{tabular}{llll}
0266 \\
OTHER COSTS, CONTINGENCY COSTS & 0.00 & LS & \(\$ 0.00000\)
\end{tabular} OTHER COSTS, CONTINGENCY COSTS

Total for Group 0074: \$0.00

\section*{Estimate Alt I KY cont 3}

Estimated Cost: \$7,818,842.99
Contingency: 29.70\%
Estimated Total: \$10,141,039.36

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(2,006.00\) & SY & \(\$ 8.00000\)
\end{tabular}

\section*{PAVEMENT REMOVED}

Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY & \(1,960.00 \mathrm{CY}\) & \(\$ 30.00000\) & \(\$ 58,800.00\) \\
MAJOR COST DRIVERS, ROADWAY & &
\end{tabular}

Total for Group 0002: \(\$ 58,800.00\)
Group 0003: Excavation - Soil
\begin{tabular}{lrllr}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0003: \$141,120.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0345 & 203E20000 & \(19,600.00\) & CY & \(\$ 6.00000\)
\end{tabular}

Total for Group 0005: \$117,600.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & & \\
\begin{tabular}{l}
O347 205E10300 \\
LIME
\end{tabular} & & & \(\$ 5.00000\)
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{llll}
0012 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0465 622E10060 & 0.00 & FT & \(\$ 110.00000\) \\
\(7: 29: 35 A M\) & & & \\
Thursday, December 02, 2010 & & & Page 2 of 12
\end{tabular}

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00

Total for Group 0009: \$0.00
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Group 0010: Subgrade Treatment - Cement} \\
\hline \multirow[t]{2}{*}{0016 A-MC-RDWY MAJOR COST DRIVERS, ROADWAY} & 533.00 SY & \$2.50000 & \$1,332.50 \\
\hline & & \multicolumn{2}{|l|}{Total for Group 0010: \$1,332.50} \\
\hline \multicolumn{4}{|l|}{Group 0011: Subgrade Treatment - Undercut \& Backfill} \\
\hline \begin{tabular}{l}
0017 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0011: \$0.00
\begin{tabular}{|c|c|c|c|c|}
\hline Group 0012: Other Roadway Costs & & & & \\
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 " \text { SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, 30" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, 48" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0026 202E11000 \\
STRUCTURE REMOVED
\end{tabular} & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER } 24 "
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0029 \text { 202E38000 } \\
& \text { GUARDRAIL REMOVED }
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \text { 202E58100 } \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0033 \text { 202E75000 } \\
& \text { FENCE REMOVED }
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

Line \# Item Number

Supplemental Description
PROOF ROLLING
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
0035 \\
\text { SU }
\end{array}
\] & \[
\begin{gathered}
\text { 204E10000 } \\
\text { 3GRADE CON }
\end{gathered}
\] & 0.00 & SY & \$0.81000 & \$0.00 \\
\hline 0036 & 451E30000 & 0.00 & FT & & \$0.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PRESSURE RELIEF JOINT, TYPE A} \\
\hline \multicolumn{5}{|l|}{GUARDRAIL, TYPE 5} & \$0.00 \\
\hline 0038 & 606E22000 & 0.00 & EAC & & \$0.0 \\
\hline
\end{tabular}
ANCHOR ASSEMBLY, TYPE B-98

0039 606E22010 0.00 EACH \(\$ 0.00\) \begin{tabular}{lll}
ANCHOR ASSEMBLY, TYPE E-98 & 0.00 EACH \\
\hline 000000
\end{tabular} ANCHOR ASSEMBLY, TYPE T
\(0041606 \mathrm{E} 35000 \mathrm{0.00} \mathrm{EACH} \quad \$ 0.00\) BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 0.00 EACH BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 \(0.00 \mathrm{EACH} \quad \$ 0.00\) IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
\(\$ 0.00\)
AGGREGATE BASE
For Fencing
0424 601E32100 0.00 CY \(\quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
GATE, TYPE 47
For Fencing
0426 625E32000 0.00 EACH \$0.00 GROUND ROD For Fencing
0466
0.00
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0012: \$0.00
Group 0014: Seeding \& Mulching / Sodding
\begin{tabular}{lllll}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \\
0467 & 0.00 & SY & \(\$ 0.00\) \\
\begin{tabular}{llll}
SEEDING AND MULCHING & & & \(\$ 0000\)
\end{tabular} \\
\hline 031 & \(660 E 25000\) & 0.00 & SY & \(\$ 15.00000\)
\end{tabular} SODDING STAKED

Group 0015: Rock Channel Protection
\begin{tabular}{lrrr}
0047 & B-MC-ERCO & 1.00 & LS \\
MAJOR COST DRIVERS, EROSION CONTROL & \(\$ 0.00000\) & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY
\end{tabular}

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO \(\quad 1.00\) LS \(\$ 0.00000 \quad \$ 0.00\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832 E 10000\) & 1.00 & LS & \(\$ 20,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & & \(\$ 20,000.00\) \\
\(0471 \quad 832 E 20000\) & \(10,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$30,000.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0017: Other Erosion Control Costs} \\
\hline \begin{tabular}{l}
0049 670E00700 \\
DITCH EROSION PROTECTION
\end{tabular} & 0.00 & SY & & \$0.00 \\
\hline & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0051 \text { 659E00100 } \\
& \text { SOIL ANALYSIS TEST }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline 0052 659E00300
TOPSOIL & 0.00 & CY & & \$0.00 \\
\hline 0053 659E14000
REPAIR SEEDING AND MULCHING & 0.00 & SY & & \$0.00 \\
\hline 0054 659E15000
INTER-SEEDING & 0.00 & SY & \$0.71000 & \$0.00 \\
\hline 0055 659E20000 COMMERCIAL FERTILIZER & 0.00 & TON & & \$0.00 \\
\hline \[
\begin{aligned}
& 0056659 \text { E31000 } \\
& \text { LIME }
\end{aligned}
\] & 0.00 & ACRE & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0057659 \text { E35000 } \\
& \text { WATER }
\end{aligned}
\] & 0.00 & MGAL & \$5.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0058 \text { 659E40000 } \\
& \text { MOWING }
\end{aligned}
\] & 0.00 & MSF & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0017: \$0.00
\(\left.\begin{array}{llll}\begin{array}{l}\text { Group 0018: Underdrains } \\ 0059 \text { C-MC-DRNG } \\ \text { MAJOR COST DRIVERS, DRAINAGE }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0018: \$0.00

Total for Group 0019: \(\$ 0.00\)
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
0476 C-MC-DRNG & 0.00 & FT & \(\$ 550.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00\)
\end{tabular}

7:29:35AM
Thursday, December 02, 2010

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
0477 C-MC-DRNG \(\quad 0.00\) EACH \(\$ 2,000.00000 \quad \$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete - Headwalls/wingwalls

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
0487 C-MC-DRNG & 0.00 & FT & \(\$ 1,400.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00\) \\
Pipe Structures - Reinforced Concrete Pipe & \(10^{\prime}-20^{\prime}\) & & \(\$ 1,500.00000\) \\
\begin{tabular}{l}
0488 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 0.00 & EACH & \\
Concrete Masonry & & & \(\$ 0.00\) \\
\hline
\end{tabular}

Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 & C-MC-DRNG & 1.00 LS & \(\$ 0.00000\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
\(\left.\begin{array}{llll}\begin{array}{l}\text { Group 0025: Closed Storm System } \\ 0077 \text { C-MC-DRNG } \\ \text { MAJOR COST DRIVERS, DRAINAGE }\end{array} & 1.00 & \text { LS } & \\ \hline \begin{array}{c}0489 \text { 603E13400 } \\ 30 " \text { CONDUIT, TYPE B (Average size) }\end{array} & 0.00 & \text { FT } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0025: \$0.00
Group 0026: Other Drainage Costs

\author{
0078 C-OC-DRNG \\ OTHER COSTS, DRAINAGE
}
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0026: \$0.00
Group 0027: Mainline - Travel Lanes
\begin{tabular}{ccccc}
0095 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0494 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) & \(\$ 0.00\) \\
13" Reinforced Concrete Pavement & & & \\
Includes 6" Agg Base and Subgrade Compaction & &
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{llll}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lllll}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{llll}
0122 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0497 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0031: \$0.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & 533.00 & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$21,853.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{rrr}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0041: \$0.00
Group 0042: Water Works
\begin{tabular}{llll}
0164 E-MC-WATR & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WATER LINE & & & \\
\(0165 \quad\) E-OC-WATR & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:29:35AM
Thursday, December 02, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
0173 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, LIGHTING & 0.00 & EACH & \(\$ 469,000.00000\) & \(\$ 0.00\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 G-MC-LTNG & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}\(\$ 0.00\)

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG 840.00 FT
\(\$ 35.00000\)
\(\$ 29,400.00\)
Lighting - Continuous
Total for Group 0046: \$29,400.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \$0.00000

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
```

0178 H-OC-SURV 0.00 LS
$\$ 0.00000$
$\$ 0.00$

```

OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$0.00
Group 0049: Signs
0179 J-MC-TRAF 1.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 0.1 Signs
\$250,000.00000
\$40,000.00
Total for Group 0049: \$40,000.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 & 1.00 & LS MC-TRAF & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 540.00\) \\
0502 & 0.18 & MILE & \(\$ 3,000.00000\) & \(\$ 260.00\)
\end{tabular}

Total for Group 0050: \$800.00
Group 0051: Other Traffic Control Costs

7:29:35AM
Thursday, December 02, 2010

Description
Supplemental Description
\begin{tabular}{llll}
0208 J-OC-TRAF \\
OTHER COSTS, TRAFFIC CONTROL & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

OTHER COSTS, TRAFFIC CONTROL Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{cccc}
\begin{tabular}{c}
0212 K-MC-SGNL \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular} & 2.00 & EACH & \begin{tabular}{c}
\(\$ 175,000.00000\) \\
Total for Group 0052:
\end{tabular} \\
& \(\$ 350,000.00\)
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \(\$ 0.00000\)
\end{tabular}\(\$ 0.00\)

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
0216 M-MC-WALL 1.00 LS \$0.00000 \$0.00

MAJOR COST DRIVERS, RETAINING WALLS
0504 M-MC-WALL
0.00 SF
\(\$ 135.00000\)
\(\$ 0.00\)
Retaining Walls
Total for Group 0055: \$0.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0532 & 202E56101 & 0.00 & EACH & \$30,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0533 & 202E56101 & 0.00 & EACH & \$15,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0534 & \multicolumn{2}{|l|}{Small Commercial} & EACH & \$12,000.00000 & \\
\hline \multicolumn{5}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} & \\
\hline 0535 & 202E56101 & 0.00 & EACH & \$7,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Residential} \\
\hline 0536 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0057: \$0.00
Group 0058: Noise Barrier
\begin{tabular}{llll}
0220 P-MC-NSBR & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, NOISE BARRIER & & & \(\$ 0.00\) \\
0505 P-MC-NSBR & 0.00 & LS & \(\$ 400.00000\)
\end{tabular}

Total for Group 0058: \$0.00
\begin{tabular}{ccccc}
Group 0059: Other Noise Barrier Costs & & \\
\begin{tabular}{c}
022 \\
OTHER COC-NSBR
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
O368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \$4,945,643.00
Group 0061: Rehabilitated Structures
```

0223 R-MC-STRC
0.00 SF
MAJOR COST DRIVERS, STRUCTURES

```
\(\$ 45.00000\)
\(\$ 0.00\)
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \(\$ 0.00\)
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00000 \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \(\$ 0.00\)
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lllll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.16 & \text { MILE } & \$ 500,000.00000\end{array}\)
OTHER COSTS, MAINTENANCE OF TRAFFIC \(\$ 500,000.00000\)

Total for Group 0070: \$80,000.00
Group 0071: Wetland Construction
\begin{tabular}{lcc}
0234 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & & \(\$ 0.00\) \\
0360 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\)
\end{tabular}\(\$ \$ 0.00\)

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:29:35AM
Thursday, December 02, 2010

Line \# Item Number
Description

Unit Price
\begin{tabular}{llll}
0235 & 0.00 & LS & \\
MAJOR COST DRIVERS, MISCELLANEOUS COSTS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\(0236 \quad\) U-OC-MISC & 0.00 & LS & \(\$ 0.00000\) \\
OTHER COSTS, MISCELLANEOUS COSTS & & & \(\$ 0.00\) \\
0237 & \(100 E 00300\) & 0.00 & LS
\end{tabular}
 SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE
 LIABILITY INSURANCE
0238 623E10000 \(\quad 1.00 \mathrm{LS} \quad \$ 29,162.98000 \quad \$ 29,162.98\)
 CONSTRUCTION LAYOUT STAKES
 0.5\%
0239 614E11000
1.00 LS \$116,651.93000
 \$116,651.93
 MAINTAINING TRAFFIC
 2\%
\begin{tabular}{lrlrr}
0240 619E16020 & 19.00 & MNTH & \(\$ 2,500.00000\) & \(\$ 47,500.00\) \\
FIELD OFFICE, TYPE C & 1.00 & LS & \(\$ 200,000.00000\) & \\
0242 624E10000 & & & \(\$ 200,000.00\) \\
MOBILIZATION & 1.00 & LS & \(\$ 29,162.98000\) & \(\$ 29,162.98\) \\
0511 103E05000 & & & \\
PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND & \\
\(0.5 \%\) & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0518 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0519 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0520 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0072: \$422,477.89

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrrr}
0243 V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 1,563,768.60000\) \\
OTHER COSTS, CONTINGENCY COSTS & & & \(\$ 1,563,768.60\) \\
\(25 \%\) & & &
\end{tabular}

Total for Group 0073: \$1,563,768.60

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
\(\$ 0.00000\)
Total for Group 0074: \$0.00

\title{
Estimate Alt I KY cont 5
}

Estimated Cost: \(\$ 71,530,905.30\)
Contingency: 57.60\%
Estimated Total: \$112,732,706.75

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0343 & 202E23000 & \(212,051.00\) & SY & \(\$ 8.00000\)
\end{tabular}

\section*{PAVEMENT REMOVED}

Group 0002: Excavation - Rock
0003 A-MC-RDWY
MAJOR COST DRIVERS, ROADWAY \begin{tabular}{llll}
\(146,868.00\) & CY & \(\$ 30.00000\) & \(\$ 4,406,040.00\)
\end{tabular}

Total for Group 0002: \$4,406,040.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlll}
\begin{tabular}{l}
0004 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{l}
\(0344 ~ 203 E 10000\) \\
EXCAVATION
\end{tabular} & \(342,692.00\) & CY & \(\$ 8.00000\) & \(\$ 2,741,536.00\)
\end{tabular}

Total for Group 0003: \$2,741,536.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
& & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 2,937,360.00\)
\end{tabular}

Total for Group 0005: \(\$ 2,937,360.00\)
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
\begin{tabular}{lll}
0010 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{c}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0347 205E10300 \\
LIME
\end{tabular} & 0.00 & & \\
\hline
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\) MAJOR COST DRIVERS, ROADWAY

Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{crrrr}
\hline 0012 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0465 622E10060 & \(20,800.00\) & FT & \(\$ 110.00000\) & \(\$ 2,288,000.00\) \\
\(7: 32: 36 A M\) & & & Page 2 of 12
\end{tabular}

Total for Group 0008: \(\$ 2,288,000.00\)
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
0014 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline 0348 206E10000 & 0.00 & SY & \$1.85000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{LIME STABILIZED SUBGRADE} \\
\hline 0349 206E10300 & 0.00 & TON & \$10.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{LIME} \\
\hline 0350 206E11000 & 0.00 & SY & \$1.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{CURING COAT} \\
\hline 0351 206E20000 & 0.00 & HOUR & \$4.00000 & \$0.00 \\
\hline TEST ROLLING & & & & \\
\hline
\end{tabular}

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement
0016 A-MC-RDWY \(298,491.00\) SY

Total for Group 0010: \(\$ 746,227.50\)
Group 0011: Subgrade Treatment - Undercut \& Backfill
\begin{tabular}{llll}
0017 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0011: \$0.00
\begin{tabular}{|c|c|c|c|c|}
\hline Group 0012: Other Roadway Costs & & & & \\
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, 30" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, 48" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0026 \text { 202E11000 } \\
& \text { STRUCTURE REMOVED }
\end{aligned}
\] & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER } 24 "
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0029 \text { 202E38000 } \\
& \text { GUARDRAIL REMOVED }
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \text { 202E58100 } \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0033 \text { 202E75000 } \\
& \text { FENCE REMOVED }
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

7:32:36AM
Thursday, December 02, 2010

Line \# Item Number

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000
Quantity Units
Unit Price
Extension

\section*{ \\ Description
Supplemental Description}

SPECIAL - PRESSURE RELIEF JOINT, TYPE A
GUARDRAIL, TYPE 5
0038 606E22000 0.00 EACH \$0.00
ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 0.00 EACH \(\$ 0.00\)
ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 0.00 EACH
\(\$ 0.00\)
ANCHOR ASSEMBLY, TYPE T
\(0041606 E 35000 \quad 0.00 \mathrm{EACH} \quad \$ 0.00\) BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 0.00 EACH
\(\$ 0.00\) BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 \(0.00 \mathrm{EACH} \quad \$ 0.00\) IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
\(\$ 0.00\)
AGGREGATE BASE
For Fencing
0424 601E32100 0.00 CY \(\quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\(\$ 0.00\)
GATE, TYPE 47
For Fencing
0426 625E32000
0.00 EACH
\(\$ 0.00\) GROUND ROD For Fencing
0466
0.00
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0012: \(\$ 74,200.00\)

\section*{Group 0014: Seeding \& Mulching / Sodding}
\begin{tabular}{lrlrr}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & \(659 E 10000\) & \(133,774.00\) & SY & \(\$ 1.00000\) \\
SEEDING AND MULCHING & & & & \(\$ 15.00000\)
\end{tabular}

Total for Group 0014: \$133,774.00

\section*{Group 0015: Rock Channel Protection}
\begin{tabular}{lrlr}
0047 & B-MC-ERCO & 1.00 & LS \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 192.00 & CY
\end{tabular}

Group 0016: Erosion Control - Item 832
7:32:36AM

Thursday, December 02, 2010

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 50,000.00000\) & \(\$ 50,000.00\) \\
STORM WATER POLLUTION PREVENTION PLAN & & \(\$ 1.00000\) & \(\$ 300,000.00\)
\end{tabular}

Total for Group 0016: \$350,000.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0017: Other Erosion Control Costs} \\
\hline \begin{tabular}{l}
0049 670E00700 \\
DITCH EROSION PROTECTION
\end{tabular} & 0.00 & SY & & \$0.00 \\
\hline & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0051 \text { 659E00100 } \\
& \text { SOIL ANALYSIS TEST }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline 0052 659E00300
TOPSOIL & 0.00 & CY & & \$0.00 \\
\hline \[
\begin{aligned}
& 0053 \text { 659E14000 } \\
& \text { REPAIR SEEDING AND MULCHING }
\end{aligned}
\] & 0.00 & SY & & \$0.00 \\
\hline 0054 659E15000 INTER-SEEDING & 0.00 & SY & \$0.71000 & \$0.00 \\
\hline 0055 659E20000 COMMERCIAL FERTILIZER & 0.00 & TON & & \$0.00 \\
\hline \[
\begin{aligned}
& 0056659 \text { E31000 } \\
& \text { LIME }
\end{aligned}
\] & 0.00 & ACRE & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0057 \text { 659E35000 } \\
& \text { WATER }
\end{aligned}
\] & 0.00 & MGAL & \$5.00000 & \$0.00 \\
\hline 0058 659E40000
MOWING & 0.00 & MSF & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0017: \$0.00
\begin{tabular}{lrrrr}
Group 0018: Underdrains & & & \\
\begin{tabular}{c}
0059 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
0062 605E05100 \\
4" SHALLOW PIPE UNDERDRAINS
\end{tabular} & \(29,635.00\) & FT & \(\$ 8.00000\) & \(\$ 237,080.00\)
\end{tabular}

Total for Group 0018: \$237,080.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\)
\(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & 86.00 & \text { FT } & \$ 350.00000\end{array}\)
MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
2.00 EACH
\$1,500.00000
\$3,000.00 MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \(\$ 33,100.00\)
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{lrrrr}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & 36.00 & FT & \(\$ 550.00000\) & \(\$ 19,800.00\) \\
0476 C-MC-DRNG & & & & \\
MAJOR COST DRIVERS, DRAINAGE & & & &
\end{tabular}

Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
```

0477 C-MC-DRNG 1.00 EACH
MAJOR COST DRIVERS, DRAINAGE
Concrete - Headwalls/wingwalls
\$2,000.00000
\$2,000.00

```

Total for Group 0021: \$21,800.00
Group 0022: Culverts, Type A: 10' - 20'

Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 & C-MC-DRNG & 1.00 & LS
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00

\section*{Group 0025: Closed Storm System}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 0077 \\
& \text { MA }
\end{aligned}
\] & C-MC-DRNG OR COST DRI & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline 0489 & 603E13400 & 11,994.00 & FT & \$75.00000 & \$899,550.00 \\
\hline \multicolumn{6}{|c|}{30" CONDUIT, TYPE B (Average size)} \\
\hline 0523 & 604E00800 & 84.00 & EACH & \$1,500.00000 & \$126,000.00 \\
\hline \multicolumn{6}{|c|}{CATCH BASIN, NO. 3A} \\
\hline 0524 & 604E31500 & 20.00 & EACH & \$3,000.00000 & \$60,000.00 \\
\hline \multicolumn{6}{|c|}{MANHOLE, NO. 3} \\
\hline 0525 & 604E36601 & 13.00 & EACH & \$1,250.00000 & \$16,250.00 \\
\hline \multicolumn{6}{|c|}{PRECAST REINFORCED CONCRETE OUTLET, AS PER PLAN} \\
\hline 0526 & Special & 0.00 & LS & \$6,400,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Pump Station (Storm)} \\
\hline 0527 & Special & 0.00 & EACH & \$5,750.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Stormceptors} \\
\hline 0529 & Special & 0.00 & LS & \$109,000.00000 & \$0.00 \\
\hline Re & ntion basin imp & & & & \\
\hline
\end{tabular}

Total for Group 0025: \$1,101,800.00
Group 0026: Other Drainage Costs

\author{
0078 C-OC-DRNG
}
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0026: \$0.00
Group 0027: Mainline - Travel Lanes
\begin{tabular}{lrrr}
0095 & 1.00 & LS & \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0494 D-MC-PVMT & \(171,479.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & \\
Includes 6" Agg Base and Subgrade Compaction & & & \(\$ 11,660,572.00\) \\
\(7: 32: 36 A M\) & & &
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{lrrr}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & \(38,883.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 2,644,044.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$2,644,044.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lrrr}
0115 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0496 & D-MC-PVMT & \(38,377.00\) & SY \\
13" Reinforced Concrete Pavement & & \(\$ 68.00000\) & \(\$ 2,609,636.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0030: \$2,609,636.00
Group 0031: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0532 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0533 & D-MC-PVMT & \(3,441.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction

Total for Group 0031: \$141,081.00
Group 0036: Ramps (including shoulders)
\begin{tabular}{lrlrl}
0122 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0497 & D-MC-PVMT & \(46,310.00\) & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0036: \$3,149,080.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{cccc}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & &
\end{tabular}

Total for Group 0041: \$0.00
\begin{tabular}{llll}
Group 0042: Water Works \\
\(0164 \quad\) E-MC-WATR \\
MAJOR COST DRIVERS, WATER LINE & 0.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{c}
\(0165 \quad\) E-OC-WATR \\
OTHER COSTS, WATER LINE
\end{tabular} & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:32:36AM
Thursday, December 02, 2010

Group 0044: Lighting - Full Interchange

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 G-MC-LTNG & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG \(13,415.00\) FT
Lighting - Continuous
\(\$ 0.00000\)
\(\$ 0.00\)
\(\$ 35.00000\)
\$469,525.00
Total for Group 0046: \$469,525.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\)

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
\(0178 \mathrm{H}-\mathrm{OC}-\) SURV
OTHER COSTS, TRAFFIC SURVEILLANCE
1.00 LS
\(\$ 537,486.54000\)
\$537,486.54
Total for Group 0048: \$537,486.54
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF
2.54 MILE
\$250,000.00000
\$635,000.00
Signs
Total for Group 0049: \$635,000.00
Group 0050: Pavement Marking

Total for Group 0050: \$90,760.00
Group 0051: Other Traffic Control Costs

7:32:36AM
Thursday, December 02, 2010

Description Supplemental Description
\begin{tabular}{llll}
0208 & J-OC-TRAF & 1.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
0212 K-MC-SGNL \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular}} & \multirow[t]{2}{*}{1.00} & \multirow[t]{2}{*}{LS} & \$0.00000 & \$0.00 \\
\hline & & & Total & \\
\hline \multicolumn{5}{|l|}{Group 0053: Other Traffic Signal Costs} \\
\hline \[
\begin{aligned}
& 0213 \text { K-OC-SGNL } \\
& \text { OTHER COSTS, SIGNALS }
\end{aligned}
\] & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \(\$ 0.00\) \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{lrlrr}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & & \(\$ 135.00000\) & \(\$ 1,197,450.00\)
\end{tabular}

Total for Group 0055: \$1,197,450.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \(\$ 0.00\)
Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0534 & 202E56101 & 3.00 & EACH & \$7,500.00000 & \$22,500.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0535 & 202E56101 & 2.00 & EACH & \$12,000.00000 & \$24,000.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0536 & 202E56101 & 0.00 & EACH & \$15,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0537 & 202E56101 & 1.00 & EACH & \$30,000.00000 & \$30,000.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Large Commercial} \\
\hline 0538 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
Group 0058: Noise Barrier & & & \\
\begin{tabular}{l}
0220 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER \\
0505 P-MC-NSBR \\
Noise Barrier
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) \\
\hline
\end{tabular}

Total for Group 0058: \$1,457,600.00
\begin{tabular}{lllll}
Group 0059: Other Noise Barrier Costs & & \\
\begin{tabular}{l}
0221 P-OC-NSBR \\
OTHER COSTS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \$10,627,680.00
Group 0061: Rehabilitated Structures
```

0223 R-MC-STRC 0.00 SF
$\$ 45.00000$
$\$ 0.00$

```

MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00

\section*{Group 0062: Other Structure Costs}
0224 R-OC-STRC
OTHER COSTS, STRUCTURES
Contingency
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \(\$ 0.00\)
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lllll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 2.54 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 2.54 & \text { MILE } & \$ 500,000.00000\end{array} \$ 1,270,000.00\)
Total for Group 0070: \$1,270,000.00
Group 0071: Wetland Construction
\begin{tabular}{ccc}
0234 & 0.00 L-MC-WTLD & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & 0.00 LS & \(\$ 0.00\) \\
0360 T-MC-WTLD & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & &
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:32:36AM
Thursday, December 02, 2010

Line \# Item Number
Description

Unit Price
0235 U-MC-MISC 0.00 LS \$0.00000 \$0.00 MAJOR COST DRIVERS, MISCELLANEOUS COSTS
0236 U-OC-MISC 0.00 LS \$0.00000 OTHER COSTS, MISCELLANEOUS COSTS
0237 100E00300 0.00 LS \$10,000.00000
\$0.00
SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE
0238 623E10000 \(\quad 1.00 \mathrm{LS} \quad \$ 271,430.70000 \quad \$ 271,430.70\)
 CONSTRUCTION LAYOUT STAKES
 0.5\%
0239 614E11000 1.00 LS \$1,085,722.80000 \$1,085,722.80
 MAINTAINING TRAFFIC
 2\%
\begin{tabular}{lrlrr}
0240 & \(619 E 16020\) & 44.00 & MNTH & \(\$ 2,500.00000\) \\
FIELD OFFICE, TYPE C & 1.00 & LS & \(\$ 1,200,000.00000\) & \(\$ 110,000.00\) \\
0242 624E10000 & & & \\
MOBILIZATION & 1.00 & LS & \(\$ 271,430.70000\) & \(\$ 200,000.00\) \\
0511 & 103E05000 & & & \\
PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND & \\
\(0.5 \%\) & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0518 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0519 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0520 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0072: \$2,938,584.20

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrrr}
\(0243 \quad\) V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
\(0244 \quad\) V-OC-CNTG & 1.00 & LS & \(\$ 14,306,181.06000\)
\end{tabular}\(\$ \$ 14,306,181.06\)

Total for Group 0073: \$14,306,181.06

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
\(\$ 0.00000\)
Total for Group 0074: \$0.00
\(\qquad\) County \(\qquad\) Route \(\qquad\) 75 Section

\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & X & Unit Price & \(=\) & Total Cost \\
\hline Titles & 36 & X & \$400 & = & \$14,400 \\
\hline \begin{tabular}{l}
Appraisal \\
-Simple \\
-Detailed
\end{tabular} & \[
\begin{aligned}
& 12 \\
& 24
\end{aligned}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 9,000 \\
\$ 108,000
\end{gathered}
\] \\
\hline Appraisal Review -Simple -Detailed & \[
\begin{aligned}
& 12 \\
& 24 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \(=\) & \[
\begin{aligned}
& \$ 6,000 \\
& \$ 48,000
\end{aligned}
\] \\
\hline Negotiations & 36 & x & \$1,100 & = & \$39,600 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{gathered}
0 \\
17 \\
1
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\) & \begin{tabular}{l}
\$88,400 \\
\$5,600
\end{tabular} \\
\hline Closings & 36 & X & \$400 & = & \$14,400 \\
\hline Project Management & 36 & x & \$550 & = & \$19,800 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & \(=\) & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$353,200 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpact of project on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates that involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to complexity of the project and
acquire the right of way in a timely manner. The acquire the right of way in a timely manner. igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternative, the step in the PDP process and the
person(s) performing the estimate.
Comments
Cost/Unit were generated from auditors tax card data

\title{
Estimate Alt I KY cont 6
}

\author{
Estimated Cost: \$33,202,743.20
}

Contingency: 53.80\%
Estimated Total: \$51,065,819.04

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(52,245.00\) & SY & \(\$ 8.00000\)
\end{tabular}

Group 0002: Excavation - Rock
0003 A-MC-RDWY
MAJOR COST DRIVERS, ROADWAY \begin{tabular}{llll}
\(331,350.00 ~ C Y\) & \(\$ 30.00000\) & \(\$ 9,940,500.00\)
\end{tabular}

Total for Group 0002: \$9,940,500.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlll}
\begin{tabular}{l}
0004 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{l}
0344 203E10000 \\
EXCAVATION
\end{tabular} & \(331,350.00\) & CY & \(\$ 8.00000\) & \(\$ 2,650,800.00\)
\end{tabular}

Total for Group 0003: \$2,650,800.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
0006 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0005: \$3,976,200.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & & \\
\begin{tabular}{l}
O347 205E10300 \\
LIME
\end{tabular} & & & \(\$ 5.00000\)
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\) MAJOR COST DRIVERS, ROADWAY

Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{crrrr}
\hline 0012 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 396,000.00\) \\
0465 622E10060 & \(3,600.00\) & FT & \(\$ 110.00000\) & \\
\(7: 34: 02 A M\) & & & Page 2 of 12
\end{tabular}

CONCRETE BARRIER, SINGLE SLOPE, TYPE B

Total for Group 0008: \(\$ 396,000.00\)
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00

\section*{Group 0010: Subgrade Treatment - Cement}

0016 A-MC-RDWY 81,883.00 SY MAJOR COST DRIVERS, ROADWAY
\(\$ 2.50000\)
\$204,707.50
Total for Group 0010: \(\$ 204,707.50\)

Group 0011: Subgrade Treatment - Undercut \& Backfill
\begin{tabular}{llll}
0017 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0011: \$0.00

\section*{Group 0012: Other Roadway Costs}
\begin{tabular}{|c|c|c|c|c|}
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 " \mathrm{SIZE}
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, 30" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, } 48 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0026 202E11000 \\
STRUCTURE REMOVED
\end{tabular} & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER } 24 "
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0029 \text { 202E38000 } \\
& \text { GUARDRAIL REMOVED }
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \quad 202 E 58100 \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{gathered}
0033 \text { 202E75000 } \\
\text { FENCE REMOVED }
\end{gathered}
\] & 0.00 & FT & & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

\section*{Description Supplemental Description}

PROOF ROLLING
0035 204E10000

SUBGRADE COMPACTION
0036 451E30000 0.00 FT
\(\$ 0.81000\)
\(\$ 0.00\)

SPECIAL - PRESSURE RELIEF JOINT, TYPE A
\begin{tabular}{lrlr}
0037 606E13000 & \(1,250.00\) & FT & \(\$ 14.00000\) \\
GUARDRAIL, TYPE 5 & 0.00 & EACH & \(\$ 17,500.00\) \\
0038 & 606E22000 & \(\$ 0.00\)
\end{tabular}

ANCHOR ASSEMBLY, TYPE B-98
\(0039606 \mathrm{E} 22010 \quad 0.00 \mathrm{EACH} \quad \$ 0.00\)
ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 0.00 EACH
\(\$ 0.00\)
ANCHOR ASSEMBLY, TYPE T
\(0041606 E 35000 \quad 0.00 \mathrm{EACH} \quad \$ 0.00\) BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 \(0.00 \mathrm{EACH} \quad \$ 0.00\) IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
\(\$ 0.00\)
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
\(\$ 0.00\)
AGGREGATE BASE
For Fencing
0424 601E32100 0.00 CY \(\quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\(\$ 0.00\)
GATE, TYPE 47
For Fencing
0426 625E32000
0.00 EACH
\(\$ 0.00\) GROUND ROD For Fencing
0466
0.00
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0012: \(\$ 17,500.00\)
Group 0014: Seeding \& Mulching / Sodding
\begin{tabular}{lrlrr}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & \(659 E 10000\) & \(67,695.00\) & SY & \(\$ 1.00000\) \\
SEEDING AND MULCHING & 0.00 & SY & \(\$ 15.00000\) & \(\$ 67,695.00\) \\
0531 & \(660 E 25000\) & & & \(\$ 0.00\)
\end{tabular}

Total for Group 0014: \(\$ 67,695.00\)

\section*{Group 0015: Rock Channel Protection}

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrrr}
\(0470 \quad 832 E 10000\) & 1.00 & LS & \(\$ 50,000.00000\) & \(\$ 50,000.00\) \\
STORM WATER POLLUTION PREVENTION PLAN & & & \(\$ 1.00000\) & \(\$ 300,000.00\)
\end{tabular}

Total for Group 0016: \$350,000.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0017: Other Erosion Control Costs} \\
\hline \begin{tabular}{l}
0049 670E00700 \\
DITCH EROSION PROTECTION
\end{tabular} & 0.00 & SY & & \$0.00 \\
\hline 0050 B-OC-ERCO
OTHER COSTS, EROSION CONTROL & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0051 \text { 659E00100 } \\
& \text { SOIL ANALYSIS TEST }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline 0052 659E00300
TOPSOIL & 0.00 & CY & & \$0.00 \\
\hline \[
\begin{aligned}
& 0053 \text { 659E14000 } \\
& \text { REPAIR SEEDING AND MULCHING }
\end{aligned}
\] & 0.00 & SY & & \$0.00 \\
\hline 0054 659E15000
INTER-SEEDING & 0.00 & SY & \$0.71000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0055 \text { 659E20000 } \\
& \text { COMMERCIAL FERTILIZER }
\end{aligned}
\] & 0.00 & TON & & \$0.00 \\
\hline 0056 LIME 659 E31000
Lichen & 0.00 & ACRE & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0057 \text { 659E35000 } \\
& \text { WATER }
\end{aligned}
\] & 0.00 & MGAL & \$5.00000 & \$0.00 \\
\hline 0058 659E40000
MOWING & 0.00 & MSF & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrrr}
0059 & 1.00 & LS & \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00000\) \\
\(0062 \quad\) 605E05100 & \(10,850.00\) & FT & \(\$ 8.00000\) \\
4" SHALLOW PIPE UNDERDRAINS & & & \(\$ 86,800.00\)
\end{tabular}

Total for Group 0018: \$86,800.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\)
\(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & 37.00 \text { FT } \\ 0480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 12,950.00\end{array}\)
MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
1.00 EACH
\$1,500.00000
\$1,500.00 MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \(\$ 14,450.00\)
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00\) \\
0476 C-MC-DRNG & 0.00 & FT & \(\$ 550.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
\begin{tabular}{l}
7:34:02AM \\
Thursday, December 02,2010
\end{tabular} & & & Page 5 of 12
\end{tabular}

Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
```

0477 C-MC-DRNG 0.00 EACH
MAJOR COST DRIVERS, DRAINAGE
Concrete - Headwalls/wingwalls

```

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH

MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00

\section*{Group 0025: Closed Storm System}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0077 & C-MC-DRNG & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, DRAINAGE} \\
\hline 0489 & \(603 E 13400\) & 3,608.00 & FT & \$75.00000 & \$270,600.00 \\
\hline \multicolumn{6}{|l|}{30" CONDUIT, TYPE B (Average size)} \\
\hline 0523 & 604E00800 & 14.00 & EACH & \$1,500.00000 & \$21,000.00 \\
\hline \multicolumn{6}{|l|}{CATCH BASIN, NO. 3A} \\
\hline 0524 & 604E31500 & 1.00 & EACH & \$3,000.00000 & \$3,000.00 \\
\hline \multicolumn{6}{|l|}{MANHOLE, NO. 3} \\
\hline 0525 & 604E36601 & 0.00 & EACH & \$1,250.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{PRECAST REINFORCED CONCRETE OUTLET, AS PER PLAN} \\
\hline 0526 & Special & 0.00 & LS & \$6,400,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Pump Station (Storm)} \\
\hline 0527 & Special & 0.00 & EACH & \$5,750.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Stormceptors} \\
\hline 0529 & Special & 0.00 & LS & \$109,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Retention basin improvements} \\
\hline
\end{tabular}

Total for Group 0025: \$294,600.00

\section*{Group 0026: Other Drainage Costs}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{lrrr}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & \(8,534.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 580,312.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$580,312.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lrlrl}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & D-MC-PVMT & \(11,410.00\) & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$775,880.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{lrlll}
0122 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0497 & D-MC-PVMT & \(2,376.00\) & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0031: \$161,568.00

Group 0032: Non - Mainline Lanes
\begin{tabular}{lllll}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & 0.00 & SY & \(\$ 41.00000\)
\end{tabular}

\section*{Asphalt}

Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$0.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{rrrr}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & &
\end{tabular}

Total for Group 0041: \$0.00
\begin{tabular}{llll}
Group 0042: Water Works \\
\(0164 \quad\) E-MC-WATR \\
MAJOR COST DRIVERS, WATER LINE & 0.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{c}
\(0165 \quad\) E-OC-WATR \\
OTHER COSTS, WATER LINE
\end{tabular} & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:34:02AM
Thursday, December 02, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
0173 & G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LIGHTING & 0.00 & EACH & \(\$ 469,000.00000\) & \(\$ 0.00\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 G-MC-LTNG & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0045: \$0.00
\begin{tabular}{lrrrr}
Group 0046: Lighting - Continuous Roadway & & \\
\begin{tabular}{c}
0176 G-MC-LTNG \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
050 GC-MTNG \\
Lighting - Continuous
\end{tabular} & \(3,600.00\) & FT & \(\$ 35.00000\) & \(\$ 126,000.00\)
\end{tabular}

Total for Group 0046: \$126,000.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \$0.000

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
0178 H-OC-SURV 1.00 LS
OTHER COSTS, TRAFFIC SURVEILLANCE
\$246,872.97000
\$246,872.97
Total for Group 0048: \$246,872.97
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \mathrm{O}\)
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 0.6 Signs
\$250,000.00000
\$170,000.00
Total for Group 0049: \$170,000.00
Group 0050: Pavement Marking
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0200 & J-MC-TRAF & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, TRAFFIC CONTROL} \\
\hline 0502 & 644E00100 & 2.92 & MILE & \$3,000.00000 & \$8,760.00 \\
\hline \multicolumn{6}{|c|}{EDGE LINE} \\
\hline 0503 & 644 E 00200 & 7.19 & MILE & \$2,000.00000 & \$14,380.00 \\
\hline
\end{tabular}

\footnotetext{
LANE LINE
}

Total for Group 0050: \$23,140.00
Group 0051: Other Traffic Control Costs
7:34:02AM
Thursday, December 02, 2010

Description Supplemental Description
\begin{tabular}{llll}
0208 & J-OC-TRAF & 1.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
0212 K-MC-SGNL \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular}} & \multirow[t]{2}{*}{0.00} & \multirow[t]{2}{*}{LS} & \$175.00000 & \$0.00 \\
\hline & & & \multicolumn{2}{|l|}{Total for Group 0052: \$0.00} \\
\hline \multicolumn{5}{|l|}{Group 0053: Other Traffic Signal Costs} \\
\hline \begin{tabular}{l}
0213 K-OC-SGNL \\
OTHER COSTS, SIGNALS
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \(\$ 0.00\) \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
0216 M-MC-WALL \(\quad 1.00\) LS \$0.00

MAJOR COST DRIVERS, RETAINING WALLS
0504 M-MC-WALL 0.00 SF
\(\$ 135.00000\)
\(\$ 0.00\)
Retaining Walls
Total for Group 0055: \$0.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \(\$ 0.00\)
Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0532 & 202E56101 & 0.00 & EACH & \$30,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0533 & 202E56101 & 0.00 & EACH & \$15,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0534 & 202E56101 & 1.00 & EACH & Small Commercial & \$12,000.00 \\
\hline \multicolumn{6}{|l|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0535 & 202E56101 & 4.00 & EACH & \$7,500.00000 & \$30,000.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0536 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0058: Noise Barrier} \\
\hline \begin{tabular}{l}
0220 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{Noise Barrier} \\
\hline & & & \multicolumn{2}{|l|}{Total for Group 0058: \$0.00} \\
\hline \multicolumn{5}{|l|}{Group 0059: Other Noise Barrier Costs} \\
\hline \begin{tabular}{l}
0221 P-OC-NSBR \\
OTHER COSTS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0059: \$0.00
\(\left.\begin{array}{lllll}\text { Group 0060: New Structures } \\ \text { 0222 R-MC-STRC } \\ \text { MAJOR COST DRIVERS, STRUCTURES }\end{array}\right)\)

Tier 3 Structures 50 ' to \(75^{\prime}\) Height \(\quad\) Total for Group 0060: \$0.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs

0224 R-OC-STRC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \(\$ 0.00\)
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
\begin{tabular}{lll}
0227 & 1.00 LS & \(\$ 0.000\)
\end{tabular}

Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00000
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \(\$ 0.00\)
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \(\$ 0.00\)
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lrlrl}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.68 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 0.68 & \text { MILE } & \$ 500,000.00000\end{array}\)
Total for Group 0070: \$340,000.00
Group 0071: Wetland Construction
\begin{tabular}{ccc}
0234 & 0.00 L-MC-WTLD & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & 0.00 LS & \(\$ 0.00\) \\
0360 T-MC-WTLD & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & &
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:34:02AM
Thursday, December 02, 2010

Line \# Item Number Description

Unit Price
0235 U-MC-MISC 0.00 LS \$0.00000 \$0.00 MAJOR COST DRIVERS, MISCELLANEOUS COSTS
0236 U-OC-MISC 0.00 LS \(\$ 0.00\) OTHER COSTS, MISCELLANEOUS COSTS \(\$ 0.00\)
0237 100E00300 0.00 LS \$0.00 SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE
0238 623E10000 \(\quad 1.00\) LS \(\$ 124,670.85000 \quad \$ 124,670.85\)
 CONSTRUCTION LAYOUT STAKES
 0.5\%
0239 614E11000 1.00 LS \$498,683.39000 \$498,683.39
 MAINTAINING TRAFFIC
 2\%
\begin{tabular}{lrlrr}
0240 619E16020 & 32.00 & MNTH & \(\$ 2,500.00000\) & \(\$ 80,000.00\) \\
FIELD OFFICE, TYPE C & 1.00 & LS & \(\$ 800,000.00000\) & \\
0242 624E10000 & & & & \(\$ 800,000.00\) \\
MOBILIZATION & 1.00 & LS & \(\$ 124,670.85000\) & \(\$ 124,670.85\) \\
0511 103E05000 & & & \\
PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND & \\
\(0.5 \%\) & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0518 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0519 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0520 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0072: \$1,628,025.09

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrrr}
0243 V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 6,640,548.64000\) \\
OTHER COSTS, CONTINGENCY COSTS & & & \(\$ 6,640,548.64\) \\
\(25 \%\) & & &
\end{tabular}

Total for Group 0073: \$6,640,548.64

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
\(\$ 0.00000\)
Total for Group 0074: \$0.00
\(\qquad\) County \(\qquad\) Route \(\qquad\) 75 Section

\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & X & Unit Price & \(=\) & Total Cost \\
\hline Titles & 9 & X & \$400 & = & \$3,600 \\
\hline \begin{tabular}{l}
Appraisal \\
-Simple \\
-Detailed
\end{tabular} & \[
5
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 3,000 \\
\$ 22,500
\end{gathered}
\] \\
\hline Appraisal Review -Simple -Detailed & \[
5
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \(=\) & \[
\begin{aligned}
& \$ 2,000 \\
& \$ 10,000
\end{aligned}
\] \\
\hline Negotiations & 9 & x & \$1,100 & = & \$9,900 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{gathered}
0 \\
23 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 119,600 \\
\$ 0
\end{gathered}
\] \\
\hline Closings & 23 & x & \$400 & = & \$9,200 \\
\hline Project Management & 23 & x & \$550 & = & \$12,650 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & \(=\) & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$192,450 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpacts of the priect on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates hat involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The acquire the right of way in a timely manner. igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternative, the step in the PDP process and the
person(s) performing the estimate.

\title{
Estimate Alt I KY cont 7
}

Estimated Cost: \$242,532,360.08
Contingency: 57.60\%
Estimated Total: \$382,230,999.49

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(130,262.00\) & SY & \(\$ 8.00000\)
\end{tabular}

PAVEMENT REMOVED

Group 0002: Excavation - Rock
\begin{tabular}{l}
0003 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} 113,\(800.00 \mathrm{CY} \quad \$ 30.00000 \quad \$ 3,414,000.00\)

Total for Group 0002: \$3,414,000.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlll}
\begin{tabular}{l}
0004 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{l}
\(0344 ~ 203 E 10000\) \\
EXCAVATION
\end{tabular} & \(170,700.00\) & CY & \(\$ 8.00000\) & \(\$ 1,365,600.00\)
\end{tabular}

Total for Group 0003: \$1,365,600.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
& & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 2\)
\end{tabular}

Total for Group 0005: \(\$ 1,707,000.00\)
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{lllll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 7.00000\) & \(\$ 0.00\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & CY & \(\$ 0.00\) \\
\begin{tabular}{l}
0347 205E10300 \\
LIME
\end{tabular} & 0.00 & TON & \(\$ 5.00000\) &
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\) MAJOR COST DRIVERS, ROADWAY

Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{crrrr}
\hline 0012 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
\(0465 \quad 622 E 10060\) & \(8,000.00\) & FT & \(\$ 110.00000\) & \(\$ 880,000.00\) \\
\(7: 35: 13 A M\) & & & & Page 2 of 12
\end{tabular}

Total for Group 0008: \$880,000.00
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00

\section*{Group 0010: Subgrade Treatment - Cement}

0016 A-MC-RDWY 158,488.00 SY MAJOR COST DRIVERS, ROADWAY

Total for Group 0010: \$396,220.00
Group 0011: Subgrade Treatment - Undercut \& Backfill
0017 A-MC-RDWY
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0011: \$0.00

\section*{Group 0012: Other Roadway Costs}
\begin{tabular}{|c|c|c|c|c|}
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \begin{tabular}{l}
\[
0022 \text { 201E23000 }
\] \\
TREE REMOVED, 30" SIZE
\end{tabular} & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, } 48 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \begin{tabular}{l}
\[
0026 \text { 202E11000 }
\] \\
STRUCTURE REMOVED
\end{tabular} & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER } 24 "
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0029 \text { 202E38000 } \\
& \text { GUARDRAIL REMOVED }
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \quad 202 E 58100 \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & & \$0.00 \\
\hline \[
\begin{aligned}
& 0033 \text { 202E75000 } \\
& \text { FENCE REMOVED }
\end{aligned}
\] & 0.00 & FT & & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

7:35:13AM
Thursday, December 02, 2010

Line \# Item Number

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000
Quantity Units
Unit Price
Extension

\section*{ \\ Description
Supplemental Description}

SPECIAL - PRESSURE RELIEF JOINT, TYPE A GUARDRAIL, TYPE 5
0038 606E22000
0.00 EACH
\(\$ 0.00\)
ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010
ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 0.00 EACH
\(\$ 0.00\) ANCHOR ASSEMBLY, TYPE T
\(0041606 \mathrm{E} 35000 \mathrm{0.00} \mathrm{EACH} \quad \$ 0.00\) BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 0.00 EACH
\(\$ 0.00\) BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 \(0.00 \mathrm{EACH} \quad \$ 0.00\) IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT
FENCE, TYPE 47
For Fencing
0423 304E20000 0.00 CY
\(\$ 0.00\)
AGGREGATE BASE
For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\(\$ 0.00\)
GATE, TYPE 47
For Fencing
0426 625E32000
0.00 EACH
\(\$ 0.00\) GROUND ROD For Fencing
0466
0.00
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0012: \(\$ 24,500.00\)

\section*{Group 0014: Seeding \& Mulching / Sodding}
\begin{tabular}{lrlr}
0045 & B-MC-ERCO & 1.00 & LS \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0467 & \(659 E 10000\) & & \\
SEEDING AND MULCHING & \(47,213.00\) & SY & \(\$ 1.00000\) \\
0531 & \(660 E 25000\) & 0.00 & SY
\end{tabular} SODDING STAKED

Total for Group 0014: \$47,213.00
Group 0015: Rock Channel Protection

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrrr}
\(0470 \quad 832 E 10000\) & 1.00 & LS & \(\$ 50,000.00000\) & \(\$ 50,000.00\) \\
STORM WATER POLLUTION PREVENTION PLAN & & & \\
\(0471832 E 20000\) & \(170,000.00\) & EACH & \(\$ 1.00000\) & \(\$ 170,000.00\)
\end{tabular}

Total for Group 0016: \$220,000.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0017: Other Erosion Control Costs} \\
\hline \begin{tabular}{l}
0049 670E00700 \\
DITCH EROSION PROTECTION
\end{tabular} & 0.00 & SY & & \$0.00 \\
\hline & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0051 \text { 659E00100 } \\
& \text { SOIL ANALYSIS TEST }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline 0052 659E00300
TOPSOIL & 0.00 & CY & & \$0.00 \\
\hline \[
\begin{aligned}
& 0053 \text { 659E14000 } \\
& \text { REPAIR SEEDING AND MULCHING }
\end{aligned}
\] & 0.00 & SY & & \$0.00 \\
\hline 0054 659E15000 INTER-SEEDING & 0.00 & SY & \$0.71000 & \$0.00 \\
\hline 0055 659E20000 COMMERCIAL FERTILIZER & 0.00 & TON & & \$0.00 \\
\hline \[
\begin{aligned}
& 0056659 \text { E31000 } \\
& \text { LIME }
\end{aligned}
\] & 0.00 & ACRE & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0057 \text { 659E35000 } \\
& \text { WATER }
\end{aligned}
\] & 0.00 & MGAL & \$5.00000 & \$0.00 \\
\hline 0058 659E40000
MOWING & 0.00 & MSF & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrrr}
0059 & 1.00 & LS & \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00000\) \\
\(0062 \quad\) 605E05100 & \(11,925.00\) & FT & \(\$ 0.00000\) \\
4" SHALLOW PIPE UNDERDRAINS & & & \(\$ 95,400.00\)
\end{tabular}

Total for Group 0018: \$95,400.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\) \(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}\) MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
\(\$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \(\$ 0.00\)
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00\) \\
0476 C-MC-DRNG & 0.00 & FT & \(\$ 550.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
\(7: 35: 13 A M\) & & & Page 5 of 12
\end{tabular}

Description Supplemental Description

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
```

0477 C-MC-DRNG 0.00 EACH
MAJOR COST DRIVERS, DRAINAGE
Concrete - Headwalls/wingwalls

```

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}
0487 C-MC-DRNG 0.00 FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH

MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00

\section*{Group 0025: Closed Storm System}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
0077
\]
MAJ & C-MC-DRNG OR COST DRIVERS, DRAINAGE & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline 0489 & 603E13400 & 21,838.00 & FT & \$75.00000 & \$1,637,850.00 \\
\hline \multicolumn{6}{|l|}{30" CONDUIT, TYPE B (Average size)} \\
\hline 0523 & 604E00800 & 98.00 & EACH & \$1,500.00000 & \$147,000.00 \\
\hline \multicolumn{6}{|l|}{CATCH BASIN, NO. 3A} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{MANHOLE, NO. 3}} \\
\hline & & & & & \\
\hline 0525 & 604E36601 & 1.00 & EACH & \$1,250.00000 & \$1,250.00 \\
\hline \multicolumn{6}{|l|}{PRECAST REINFORCED CONCRETE OUTLET, AS PER PLAN} \\
\hline 0526 & Special & 1.00 & LS & \$6,400,000.00000 & \$6,400,000.00 \\
\hline \multicolumn{6}{|l|}{Pump Station (Storm) \$ \$6,400,000.00} \\
\hline 0527 & Special & 6.00 & EACH & \$5,750.00000 & \$34,500.00 \\
\hline \multicolumn{6}{|l|}{Stormceptors} \\
\hline 0529 & Special & 1.00 & LS & \$109,000.00000 & \$109,000.00 \\
\hline \multicolumn{6}{|l|}{Retention basin improvements} \\
\hline
\end{tabular}

Total for Group 0025: \$8,422,600.00

\section*{Group 0026: Other Drainage Costs}
```

0 0 7 8 ~ C - O C - D R N G ~
OTHER COSTS, DRAINAGE

```
1.00 LS
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{lrrr}
0095 & 1.00 & LS & \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0494 D-MC-PVMT & \(61,360.00\) & SY & \(\$ 0.0000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 4,172,480.00\) \\
Includes 6" Agg Base and Subgrade Compaction & & \\
\(7: 35: 13 A M\) & & &
\end{tabular}

Total for Group 0027: \$4,172,480.00
Group 0028: Mainline - Outside Shoulder
\begin{tabular}{lrrr}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & \(17,902.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 1,217,336.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$1,217,336.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lrrrr}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 D-MC-PVMT & \(12,396.00\) & SY & \(\$ 68.00000\) & \(\$ 842,928.00\) \\
13" Reinforced Concrete Pavement & & & \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0030: \$842,928.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{lrlrl}
0122 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0497 & D-MC-PVMT & \(15,551.00\) & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0031: \$1,057,468.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & \(51,279.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$2,102,439.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{rrrr}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & &
\end{tabular}

Total for Group 0041: \$0.00
\begin{tabular}{llll}
Group 0042: Water Works \\
\(0164 \quad\) E-MC-WATR \\
MAJOR COST DRIVERS, WATER LINE & 0.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{c}
\(0165 \quad\) E-OC-WATR \\
OTHER COSTS, WATER LINE
\end{tabular} & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

7:35:13AM
Thursday, December 02, 2010

Total for Group 0043: \$0.00
Group 0044: Lighting - Full Interchange
\begin{tabular}{llll}
0173 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LIGHTING & & & \(\$ 0.00\) \\
0499 G-MC-LTNG & 2.00 & EACH & \(\$ 469,000.00000\) \\
MAJOR COST DRIVERS, LIGHTING & & & Total for Group 0044: \(\$ 938,000.00\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 G-MC-LTNG & 0.00 LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway

0176 G-MC-LTNG 1.00 LS
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG 6,195.00 FT
Lighting - Continuous
\(\$ 0.00000\)
\(\$ 0.00\)
\(\$ 35.00000\)
\$216,825.00
Total for Group 0046: \$216,825.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \$0.00000 \$0.00

Total for Group 0047: \$0.00

Group 0048: Traffic Surveillance
0178 H-OC-SURV
OTHER COSTS, TRAFFIC SURVEILLANCE

Total for Group 0048: \$1,844,812.92
Group 0049: Signs
0179 J-MC-TRAF \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 1.1 Signs
1.17 MILE
\(\$ 250,000.00000\)
\(\$ 292,500.00\)
Total for Group 0049: \$292,500.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 & 1.00 & LS & & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 0.00\) \\
0502 & 18.92 & MILE & \(\$ 3,000.00000\) & \(\$ 56,760.00\) \\
EDGE LINE & & & & \(\$ 27,540.00\)
\end{tabular}

Total for Group 0050: \$84,300.00
Group 0051: Other Traffic Control Costs
7:35:13AM
Thursday, December 02, 2010

Description Supplemental Description
\begin{tabular}{llll}
0208 J-OC-TRAF & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
0212 K-MC-SGNL \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular}} & & LS & \$175,000.00000 & \$1,225,000.00 \\
\hline & & & Total for Group 0052: & \$1,225,000.00 \\
\hline \multicolumn{5}{|l|}{Group 0053: Other Traffic Signal Costs} \\
\hline 0213 K-OC-SGNL OTHER COSTS, SIGNALS & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{llll}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & \(\$ 0.00\) \\
0504 M-MC-WALL & \(118,825.00\) & SF & \(\$ 135.00000\)
\end{tabular}

Total for Group 0055: \$16,041,375.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \(\$ 0.00\)
Group 0057: Building Demolition

7:35:13AM
Thursday, December 02, 2010

Total for Group 0057: \$361,000.00

\section*{Group 0058: Noise Barrier}

0220 P-MC-NSBR
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, NOISE BARRIER
0505 P-MC-NSBR
\(47,772.00\) SF
Noise Barrier

Total for Group 0058: \$1,194,300.00
\begin{tabular}{lllll}
Group 0059: Other Noise Barrier Costs & & \\
\begin{tabular}{l}
0221 P-OC-NSBR
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, NOISE BARRIER & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
O-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & & &
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \$136,534,812.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \$0.00
Group 0063: Temporary Road and Pavement Costs
\begin{tabular}{ll}
0225 S-MC-MNTC & 1.00 LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\end{tabular}

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \(\$ 0.00\)
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{llll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS }\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 1.17 & \text { MILE } & \$ 500,000.00000\end{array}\)

Group 0071: Wetland Construction
\begin{tabular}{ccc}
0234 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & & \(\$ 0.00\) \\
0360 T-MC-WTLD & \(\$ 0.00\) & \(\$ 0.00000\)
\end{tabular}\(\$\)

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
7:35:13AM
Thursday, December 02, 2010

Line \# Item Number
Description

Unit Price
\begin{tabular}{llll}
0235 & 0.00 & USS MC-MISC & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, MISCELLANEOUS COSTS & & \(\$ 0.00\) \\
\(0236 \quad\) U-OC-MISC & 0.00 & LS & \(\$ 0.00000\) \\
OTHER COSTS, MISCELLANEOUS COSTS & & & \(\$ 0.00\) \\
0237 100E00300 & 0.00 & LS & \(\$ 10,000.00000\)
\end{tabular} SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE
0238 623E10000 \(1.00 \mathrm{LS} \quad \$ 931,630.52000 \quad \$ 931,630.52\)
 CONSTRUCTION LAYOUT STAKES
 0.5\%
0239 614E11000 1.00 LS \$3,726,522.10000 \$3,726,522.10
 MAINTAINING TRAFFIC
 2\%
\begin{tabular}{lrlrr}
0240 619E16020 & 44.00 & MNTH & \(\$ 2,500.00000\) & \(\$ 110,000.00\) \\
FIELD OFFICE, TYPE C & 1.00 & LS & \(\$ 2,000,000.00000\) & \(\$ 2,000,000.00\) \\
0242 624E10000 & & & \\
MOBILIZATION & 1.00 & LS & \(\$ 931,630.52000\) & \(\$ 931,630.52\) \\
0511 103E05000 & & & \\
PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND & \\
\(0.5 \%\) & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0518 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0519 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\) \\
0520 & 0.00 & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0072: \$7,699,783.14

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrrr}
0243 V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
\(0244 \quad\) V-OC-CNTG & 1.00 & LS & \(\$ 48,506,472.02000\) \\
OTHER COSTS, CONTINGENCY COSTS & & & \(\$ 48,506,472.02\) \\
\(25 \%\)
\end{tabular}

Total for Group 0073: \$48,506,472.02

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
\(\$ 0.00000\)
Total for Group 0074: \$0.00
\(\qquad\) County \(\qquad\) Route \(\qquad\) 75 Section
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Macro View & & & & & & & & & & & & & ibutes & & \\
\hline Acquisition & Unit (SF) or (Acreage) & X & \[
\begin{gathered}
\text { Cost/Unit } \\
\text { (\$\$/SF) } \\
(\$ \$ / A c r e) \\
\hline
\end{gathered}
\] & Subtotal Land Value & + & \[
\begin{array}{|c|}
\hline \text { Structure } \\
\text { Values } \\
\text { (if Taken) }
\end{array}
\] & + & Damages (Loss in Value to the Residue) & \begin{tabular}{|c|}
\hline Subtotal \\
Structures \& \\
Damages
\end{tabular} & \(=\) & Total Non Labor Acquisition Costs & Parcel Count & Total Takes & Partial Takes & No. of Structures Impacted \\
\hline -Residential & 5.94 & x & \$59,492.13 & \$353,383 & + & 1102500 & + & N/A & \$1,102,500.00 & = & \$1,455,883.25 & 44 & 36 & 8 & 30 \\
\hline -Commercial & 5.19 & x & \$643,180.38 & \$3,338,106 & + & 654000 & + & N/A & \$654,000.00 & = & \$3,992,106.17 & 24 & 8 & 16 & 5 \\
\hline -Industrial & 0 & x & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & = & \$0.00 & 0 & 0 & 0 & 0 \\
\hline -Other & 0.34 & x & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & = & \$0.00 & 1 & 1 & 0 & 1 \\
\hline Relocation & Unit (Displacement) & x & *RHP/* & /*RSP & + & Move Cost & + & Reestablis & ishment & \(=\) & Total Non Labor RAP Costs & Estim & \begin{tabular}{l}
amount of tim \\
all RAP parce
\end{tabular} & \begin{tabular}{l}
necessary \\
= (months)
\end{tabular} & relocate
\[
24
\] \\
\hline -Residential Owner Occupant Tenant & \[
\begin{aligned}
& 24 \\
& 30
\end{aligned}
\] & x & & & \[
\begin{array}{|l}
+ \\
+
\end{array}
\] & \[
\begin{aligned}
& \$ 6,000 \\
& \$ 1,750
\end{aligned}
\] & & & & \[
\begin{aligned}
& = \\
& =
\end{aligned}
\] & \[
\begin{aligned}
& \$ 960,000 \\
& \$ 352,500
\end{aligned}
\] & Estim & \begin{tabular}{l}
number of yea \\
uisition begins =
\end{tabular} & until project & \begin{tabular}{l}
wide R/W \\
.5
\end{tabular} \\
\hline -Commerical/Farm/NPO Owner Tenant & \[
\begin{aligned}
& 2 \\
& 4
\end{aligned}
\] & & & & \[
\begin{aligned}
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 15,000 \\
& \$ 15,000
\end{aligned}
\] & \[
\begin{aligned}
& + \\
& + \\
& +
\end{aligned}
\] & \[
\begin{aligned}
& \$ 10,0 \\
& \$ 10,0
\end{aligned}
\] & & \[
\begin{aligned}
& = \\
& =
\end{aligned}
\] & \[
\begin{aligned}
& \$ 50,000 \\
& \$ 100,000
\end{aligned}
\] & & & & \\
\hline -Personal Property & 0 & & & & x & \$1,000 & & & & \(=\) & \$0 & & & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\(\{[(\) Total Cost of Acquisition Cost \() \times 0.90] \times 0.025\}+\{[\) (Total of Acquisition Cost \() \times 0.15] \times 1.20\}+\{[(\) Total of Acquisition Cost) \(\times 0.10] \times 1.50\}=\) Contingency}} & \multicolumn{4}{|r|}{Contingency
(Incidentals, Admin. Review \& Appropriation)} & 1920416.272 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
*RHP - Replacement Housing Payment \\
*RSP - Rent Supplemental Payment \\
*NPO - Non-Profit Organization
\end{tabular}}} \\
\hline & & & & & & & \multicolumn{4}{|c|}{Total Non Labor R/W Costs} & \$8,830,905.70 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline View & & & & & \\
\hline Labor (External) & Unit (Parcels) & \(x\) & Unit Price & = & Total Cost \\
\hline Titles & 69 & x & \$400 & = & \$27,600 \\
\hline Appraisal -Simple -Detailed & \[
\begin{gathered}
5 \\
64
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x
\end{aligned}
\] & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\)
\(=\) & \[
\begin{gathered}
\$ 3,750 \\
\$ 288,000
\end{gathered}
\] \\
\hline Appraisal Review -Simple -Detailed & \[
\begin{gathered}
5 \\
64
\end{gathered}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 500 \\
\$ 2,000 \\
\hline
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 2,500 \\
\$ 128,000
\end{gathered}
\] \\
\hline Negotiations & 69 & x & \$1,100 & = & \$75,900 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{gathered}
0 \\
54 \\
4
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\)
\(=\)
\(=\)
\(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 280,800 \\
\$ 22,400
\end{gathered}
\] \\
\hline Closings & 69 & x & \$400 & = & \$27,600 \\
\hline Project Management & 69 & \(x\) & \$550 & \(=\) & \$37,950 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & \(=\) & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$894,500 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpact of theject on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates that involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to complexity of the project and of way in a timely manner. The acquire the right of way in a timely manner. The
person making the cost estimate may adjust the igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
and alternative, the step in the PDP process and
person(s) performing the estimate.
Comments
Cost/Unit were generated from auditors tax card data. Cost/Unit were generated from auditors tax card data.
Changed "Agriculture" category to "Other" to include Goebel Park and other properties that do not fit the main categories.

\title{
Estimate Alt I KY cont 8
}

\author{
Estimated Cost: \$40,553,981.01
}

Contingency: 65.50\%
Estimated Total: \$67,116,838.57

Base Date: 01/01/15
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District:
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

\author{
Description Supplemental Description
}

Group 0001: Pavement Removal
\begin{tabular}{llll}
0001 & A-MC-RDWY & 0.00 & LS \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00000\) \\
\(0343 ~ 202 E 23000\) & 0.00 & SY & \(\$ 8.00000\)
\end{tabular}

\section*{PAVEMENT REMOVED}

Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{llll}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \\
\begin{tabular}{l}
0344 203E10000 \\
EXCAVATION
\end{tabular} & 0.00 & CY & \(\$ 8.00000\)
\end{tabular}

Total for Group 0003: \$0.00
Group 0004: Excavation - Hazardous
0006 A-MC-RDWY
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0004: \$0.00
Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{llll}
0007 & A-MC-RDWY & 1.00 & LS \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00000\) \\
0345 & \(03 E 20000\) & 0.00 & CY
\end{tabular}

Total for Group 0005: \$0.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & & & \\
\begin{tabular}{l}
0347 205E10300 \\
LIME
\end{tabular} & 0.00 & TON & \(\$ 5.00000\)
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{llll}
0012 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0465 622E10060 & 0.00 & FT & \(\$ 110.00000\) \\
\(7: 36: 37 A M\) & & & \\
Thursday, December 02, 2010 & & & Page 2 of 11
\end{tabular}

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00
\begin{tabular}{lll}
Group 0010: Subgrade Treatment - Cement \\
0016 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY & 0.00 sY & \(\$ 2.50000\)
\end{tabular}

Group 0011: Subgrade Treatment - Undercut \& Backfill
0017 A-MC-RDWY \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, ROADWAY
Total for Group 0011: \$0.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0012: Other Roadway Costs} \\
\hline \begin{tabular}{l}
0019 A-OC-RDWY \\
OTHER COSTS, ROADWAY \\
Contingency
\end{tabular} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 " \text { SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, } 30 \text { SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, } 48 " \text { SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0026 \text { 202E11000 } \\
& \text { STRUCTURE REMOVED }
\end{aligned}
\] & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline 0034 204E45000 PROOF ROLLING & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0035 \text { 204E10000 } \\
& \text { SUBGRADE COMPACTION }
\end{aligned}
\] & 0.00 & SY & \$0.81000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0037 \text { 606E13000 } \\
& \text { GUARDRAIL, TYPE } 5
\end{aligned}
\] & 0.00 & FT & \$14.00000 & \$0.00 \\
\hline 0466 & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{5}{|c|}{Total for Group 0012: \$0.00} \\
\hline
\end{tabular}

Group 0014: Seeding \& Mulching / Sodding
0045 B-MC-ERCO 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, EROSION CONTROL
7:36:37AM
Thursday, December 02, 2010

\section*{Description Supplemental Description}
\begin{tabular}{lllll}
0467 & 659E10000 & 0.00 & SY & \(\$ 1.00000\) \\
SEEDING AND MULCHING & 0.00 & SY & \(\$ 0.00\) \\
0531 & 660E25000 & \(\$ 15.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0014: \$0.00
Group 0015: Rock Channel Protection
\begin{tabular}{lrlrl}
0047 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY & \(\$ 75.00000\)
\end{tabular}

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832

Total for Group 0016: \(\$ 22,000.00\)
Group 0018: Underdrains
\begin{tabular}{llll}
0059 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00\) \\
\(0062 \quad 605 E 05100\) \\
4" SHALLOW PIPE UNDERDRAINS & 0.00 & FT & \(\$ 8.00000\)
\end{tabular}

Total for Group 0018: \$0.00

MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
0067 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & & LS & \$0.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0476 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE \\
Pipe Structures - Reinforced Concrete 5'-10
\end{tabular} & & FT & \$550.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0477 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE \\
Concrete - Headwalls/wingwalls
\end{tabular} & 0.00 & EACH & \$1,500.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0021: \$0.00

\section*{Description Supplemental Description}

Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{lllll}
0486 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH
\$1,500.00000
\$0.00
MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00

Total for Group 0025: \$0.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{lllll}
0095 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0494 & D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\)
\end{tabular}

Total for Group 0027: \(\$ 0.00\)
Group 0028: Mainline - Outside Shoulder
\begin{tabular}{llll}
0100 & D-MC-PVMT & 1.00 & LS
\end{tabular}\(\$ \$ 0.00000 \mathrm{\$ 0.00}\)\begin{tabular}{l}
MAJOR COST DRIVERS, PAVEMENT
\end{tabular}

Line \# Item Number Description Supplemental Description

0495 D-MC-PVMT 0.00 SY
13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Extension

Unit Price \(\$ 59.00000\)

Total for Group 0028: \(\$ 0.00\)
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{llll}
0115 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0496 D-MC-PVMT & 0.00 & SY & \(\$ 59.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{llll}
0122 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0497 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Group 0032: Non - Mainline Lanes
\begin{tabular}{llll}
0132 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0498 D-MC-PVMT & SY & \(\$ 40.00000\) \\
Asphalt & & & \(\$ 0.00\) \\
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction &
\end{tabular}

Total for Group 0032: \$0.00
Group 0041: Other Pavement Costs
\begin{tabular}{llll}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & & &
\end{tabular}

Total for Group 0041: \$0.00
Group 0042: Water Works
\begin{tabular}{llll}
\begin{tabular}{c}
0164 \\
MAJOR COST DRIVERS, WATER LINE
\end{tabular} & 0.00 & LS & \(\$ 0.00000\) \\
0165 E-OC-WATR & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

OTHER COSTS, WATER LINE Total for Group 0042: \$0.00
Group 0043: Sanitary Line
\begin{tabular}{lll}
\begin{tabular}{ll}
0170 \\
MAJOR COST DRIVERS, SANITARY SEWER
\end{tabular} & 0.00 & LS
\end{tabular}

Total for Group 0044: \$0.00
Group 0045: Lighting - Partial Interchange
```

0 2 8 8 G-MC-LTNG 0.00 LS
$\$ 0.00$

```

MAJOR COST DRIVERS, LIGHTING

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
\begin{tabular}{lrrr}
0176 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{llll}
MAJOR COST DRIVERS, LIGHTING & & & \\
\begin{tabular}{l}
0500 G-MC-LTNG \\
Lighting - Continuous
\end{tabular} & \(3,492.00\) & FT & \(\$ 35.00000\)
\end{tabular}\(\$ 122,220.00\)
\end{tabular}

Total for Group 0046: \$122,220.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG
0.00 LS
\(\$ 0.00000\)
\$0.00
Total for Group 0047: \$0.00

Group 0048: Traffic Surveillance
0178 H-OC-SURV \(1.00 \mathrm{LS} \quad \$ 309,731.25000 \quad \$ 309,731.25\)

OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$309,731.25
Group 0049: Signs
0179 J-MC-TRAF
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 0.66 MILE
\$250,000.00000
\$165,000.00
Signs
Total for Group 0049: \$165,000.00
Group 0050: Pavement Marking
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0200 & J-MC-TRAF & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, TRAFFIC CONTROL} \\
\hline \multicolumn{6}{|l|}{EDGE LINE} \\
\hline \multicolumn{5}{|l|}{LANE LINE} & \$1,980.00 \\
\hline & & & & Total for G & 0.00 \\
\hline \multicolumn{6}{|l|}{Group 0051: Other Traffic Control Costs} \\
\hline \[
0208
\] & \begin{tabular}{l}
J-OC-TRAF \\
HER COSTS,
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
0212 K-MC-SGNL
1.00 LS
\$0.00000
\(\$ 0.00\)
7:36:37AM
Thursday, December 02, 2010

\author{
MAJOR COST DRIVERS, SIGNALS
}

Total for Group 0052: \$0.00
Group 0053: Other Traffic Signal Costs
\begin{tabular}{llll}
0213 K-OC-SGNL & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00

Total for Group 0055: \$0.00
Group 0056: Other Retaining Wall Costs
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, RETAINING WALLS

Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0538 & 202E56101 & 0.00 & EACH & \$30,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0539 & 202E56101 & 0.00 & EACH & \$15,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0540 & 202E56101 & 0.00 & EACH & \$12,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0541 & 202E56101 & 0.00 & EACH & \$7,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Residential} \\
\hline 0542 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{REMOVAL MISC.:} \\
\hline & io Tower & & & & \\
\hline
\end{tabular}

Total for Group 0057: \$0.00
Group 0058: Noise Barrier
0220 P-MC-NSBR
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
7:36:37AM
Thursday, December 02, 2010
Page 8 of 11
Group 0059: Other Noise Barrier Costs
\begin{tabular}{llll}
0221 & P-OC-NSBR & 1.00 & LS \\
OTHER COSTS, NOISE BARRIER & 0.00 & LS & \(\$ 0.00000\) \\
0368 P-MC-NSBR & \(\$ 0.00\) \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular}

Total for Group 0059: \$0.00
\(\left.\begin{array}{llll}\text { Group 0060: New Structures } \\ \text { 0222 R-MC-STRC } \\ \text { MAJOR COST DRIVERS, STRUCTURES }\end{array}\right)\)

Tier 3 Structures 50' to 75' Height
Total for Group 0060: \(\$ 0.00\)

\section*{Group 0061: Rehabilitated Structures}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
0223 \\
\mathrm{M}
\end{gathered}
\] & R-MC-STRC OR COST DR & \[
\text { ES } \quad 1.00
\] & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{CLASS S CONCRETE, BRIDGE DECK new bridge deck on existing beams} \\
\hline \[
0535
\]
SF & \[
\begin{aligned}
& \text { 514E99000 } \\
& \text { CIAL - BRIDG }
\end{aligned}
\] & 1.00 & LS & \$22,000,000.00000 & \$22,000,000.00 \\
\hline \multicolumn{6}{|l|}{Structural repair/rehabilitation} \\
\hline \[
\begin{array}{r}
0537 \\
\text { PC } \\
\text { Bri }
\end{array}
\] & 202E11301 TIONS OF S dge deck remo & \begin{tabular}{l}
\[
170,177.00
\] \\
ED, AS PER
\end{tabular} & \[
\begin{aligned}
& \text { SF } \\
& \text { LAN }
\end{aligned}
\] & \$10.00000 & \$1,701,770.00 \\
\hline
\end{tabular}

Total for Group 0061: \$30,657,965.00
Group 0062: Other Structure Costs

0224 R-OC-STRC
OTHER COSTS, STRUCTURES Contingency
0534
0.00 LS
0.00
\(\$ 0.00000\)
\(\$ 0.00000\)
Total for Group 0062: \$0.00

Group 0063: Temporary Road and Pavement Costs

\section*{Description} Supplemental Description

Group 0064: Portable Concrete Barrier (PCB)
0226 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\) MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0065: \(\$ 0.00\)
Group 0066: Sheeting
0229 S-MC-MNTC 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC 0.00 LS \(\$ 0.00000\) MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0067: \(\$ 0.00\)
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \$0.00000 MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\begin{tabular}{lllll}
0233 & S-OC-MNTC & 1.00 & LS & \(\$ 0.00000\) \\
OTHER COSTS, MAINTENANCE OF TRAFFIC & & \(\$ 0.00\) \\
0512 & S-OC-MNTC & 0.00 & MILE & \(\$ 5,000,000.00000\)
\end{tabular}\(\$ \$ 0.00\) OTHER COSTS, MAINTENANCE OF TRAFFIC

Total for Group 0070: \$0.00
Group 0071: Wetland Construction
\begin{tabular}{lccc}
0234 & T-MC-WTLD & 0.00 & LS \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & \(\$ 0.00000\) & \(\$ 0.00\) \\
0360 & T-MC-WTLD & \(0.00 ~ L S\) & \(\$ 0.00000\)
\end{tabular}

MAJOR COST DRIVERS, WETLAND CONSTRUCTION
Total for Group 0071: \$0.00

\section*{Description Supplemental Description}

Group 0072: Misc. Costs
\begin{tabular}{lccc}
0235 & U-MC-MISC & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, MISCELLANEOUS COSTS & \(\$ 0.00\) \\
0236 & \(0.00 ~ L S\) & \(\$ 0.00000\)
\end{tabular}

OTHER COSTS, MISCELLANEOUS COSTS
0237 100E00300 0.00 LS \$10,000.00000 \(\$ 0.00\)

SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE
0238 623E10000 1.00 LS \$156,414.28000 \$156,414.28 CONSTRUCTION LAYOUT STAKES 0.5\%

Total for Group 0072: \$1,160,328.56
Group 0073: Design Contingency Costs
\begin{tabular}{lrrrr}
0243 & V-MC-CNTG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 0.00\) \\
0244 & V-OC-CNTG & 1.00 & LS & \(\$ 8,110,796.20000\)
\end{tabular} OTHER COSTS, CONTINGENCY COSTS 25\%

Total for Group 0073: \$8,110,796.20
Group 0074: Inflation Contingency
\begin{tabular}{llll}
0266 & \(V-O C-C N T G\) & 0.00 & LS
\end{tabular} OTHER COSTS, CONTINGENCY COSTS

Total for Group 0074: \$0.00

\title{
Estimate Alt I OH cont 2
}

\author{
Estimated Cost: \$10,727,667.45
}

Contingency: 29.20\%
Estimated Total: \$13,860,146.35
Linn St
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(17,258.00\) & SY & \(\$ 8.00000\)
\end{tabular}

Total for Group 0001: \(\$ 138,064.00\)
Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlrr}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0003: \$100,736.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0345 & 203E20000 & \(12,592.00\) & CY & \(\$ 6.00000\)
\end{tabular}

Total for Group 0005: \$75,552.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{lllll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{ccccc}
0012 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 10.00000\) & \(\$ 0.00\) \\
\(0465 \quad\) 622E10060 & 0.00 & FT & & \\
\begin{tabular}{c}
8:07:25AM \\
Wednesday, December 01, 2010
\end{tabular} & & & & Page 2 of 12
\end{tabular}

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00

Total for Group 0009: \$0.00

\title{
Group 0010: Subgrade Treatment - Cement \\ 0016 A-MC-RDWY 12,534.00 SY MAJOR COST DRIVERS, ROADWAY \\ \(\$ 2.50000\) \\ \$31,335.00 \\ Total for Group 0010: \(\$ 31,335.00\) \\ Group 0011: Subgrade Treatment - Undercut \& Backfill
}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0012: Other Roadway Costs} \\
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, 30" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, } 48 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0026 \text { 202E11000 } \\
& \text { STRUCTURE REMOVED }
\end{aligned}
\] & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline 0028 202E35200
PIPE REMOVED, OVER 24" & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0029 \text { 202E38000 } \\
& \text { GUARDRAIL REMOVED }
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \text { 202E58100 } \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{gathered}
0033202 E 75000 \\
\text { FENCE REMOVED }
\end{gathered}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

Line \# Item Number
Description Supplemental Description

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000 SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
GUARDRAIL, TYPE 5
0038 606E22000 ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EAC IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 \(\quad 0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00\) AGGREGATE BASE For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\$731.31641
\(\$ 0.00\)
GATE, TYPE 47 For Fencing
0426 625E32000 GROUND ROD For Fencing
0466
0.00
\(\$ 0.00000\)
Total for Group 0012: \$0.00
\begin{tabular}{lllll}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \\
0467 & 0.00 & SY & \(\$ 1.00000\) & \(\$ 0.00\) \\
SEEDING AND MULCHING & & & & \(\$ 0.00\)
\end{tabular} SODDING STAKED

Total for Group 0014: \$0.00
Group 0015: Rock Channel Protection
\begin{tabular}{lrlll}
0047 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY & \(\$ 75.00000\)
\end{tabular}

ROCK CHANNEL PROTECTION, TYPE A WITH FILTER Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO \(\quad 1.00\) LS \(\$ 0.00000 \quad \$ 0.00\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 20,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & \(\$ 20,000.00\) \\
\(0471 \quad 832 E 20000\) & \(6,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$26,000.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0017: Other Erosion Control Costs} \\
\hline \begin{tabular}{l}
0049 670E00700 \\
DITCH EROSION PROTECTION
\end{tabular} & 0.00 & SY & \$0.00000 & \$0.00 \\
\hline & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0051 \text { 659E00100 } \\
& \text { SOIL ANALYSIS TEST }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline 0052 659E00300
TOPSOIL & 0.00 & CY & \$0.00000 & \$0.00 \\
\hline 0053 659E14000
REPAIR SEEDING AND MULCHING & 0.00 & SY & \$0.00000 & \$0.00 \\
\hline 0054 659E15000
INTER-SEEDING & 0.00 & SY & \$0.71000 & \$0.00 \\
\hline 0055 659E20000 COMMERCIAL FERTILIZER & 0.00 & TON & \$410.06813 & \$0.00 \\
\hline 0056 LIME 659 E31000
Liche & 0.00 & ACRE & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0057659 \text { E35000 } \\
& \text { WATER }
\end{aligned}
\] & 0.00 & MGAL & \$5.00000 & \$0.00 \\
\hline 0058 659E40000
MOWING & 0.00 & MSF & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrllr}
0059 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0018: \$36,192.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\) \(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}\) MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
\(\$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{ccccc}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 550.00000\) & \(\$ 0.00\) \\
0476 C-MC-DRNG & 0.00 & FT & & \\
MAJOR COST DRIVERS, DRAINAGE & & & & Page 5 of 12
\end{tabular}

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
```

0 4 7 7 ~ C - M C - D R N G ~ 0 . 0 0 ~ E A C H ~
MAJOR COST DRIVERS, DRAINAGE
Concrete - Headwalls/wingwalls

```

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
0486 C-MC-DRNG
MAJOR COST DRIVERS, DRAINAGE \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH
\$1,500.00000
\(\$ 0.00\)
MAJOR COST DRIVERS, DRAINAGE
Concrete Masonry
Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
Group 0025: Closed Storm System
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0077 & C-MC-DRNG & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{MAJOR COST DRIVERS, DRAINAGE} \\
\hline 0489 & 603E13400 & 1,694.00 & FT & \$75.00000 & \$127,050.00 \\
\hline \multicolumn{6}{|l|}{30" CONDUIT, TYPE B (Average size)} \\
\hline 0523 & 604E00800 & 16.00 & EACH & \$1,500.00000 & \$24,000.00 \\
\hline \multicolumn{6}{|l|}{CATCH BASIN, NO. 3A} \\
\hline 0524 & 604E31500 & 4.00 & EACH & \$3,000.00000 & \$12,000.00 \\
\hline \multicolumn{6}{|l|}{MANHOLE, NO. 3} \\
\hline 0525 & 604E36601 & 0.00 & EACH & \$1,250.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{PRECAST REINFORCED CONCRETE OUTLET, AS PER PLAN} \\
\hline 0526 & Special & 0.00 & LS & \$6,400,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Pump Station (Storm)} \\
\hline 0527 & Special & 0.00 & EACH & \$5,750.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Stormceptors} \\
\hline 0529 & Special & 0.00 & LS & \$109,000.00000 & \$0.00 \\
\hline Ret & ntion basin imp & & & & \\
\hline
\end{tabular}

Total for Group 0025: \$163,050.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{cccc}
0095 D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0494 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & \\
Includes 6" Agg Base and Subgrade Compaction & & \(\$ 0.00\) \\
\begin{tabular}{l}
8:07:25AM \\
Wednesday, December 01, 2010
\end{tabular} & & Page 6 of 12
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{llll}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lllll}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{llll}
0122 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0497 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0031: \$0.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & \(12,534.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$513,894.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{cccc}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0041: \$0.00
\begin{tabular}{llll}
Group 0042: Water Works \\
\(0164 \quad\) E-MC-WATR \\
MAJOR COST DRIVERS, WATER LINE & 0.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{c}
\(0165 \quad\) E-OC-WATR \\
OTHER COSTS, WATER LINE
\end{tabular} & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

8:07:25AM
Wednesday, December 01, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{cccc}
0173 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LIGHTING & 0.00 & EACH & \(\$ 469,000.00000\)
\end{tabular}

Total for Group 0044: \$0.00
Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 G-MC-LTNG & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG \(2,665.00\) FT
Lighting - Continuous
\(\$ 0.00000\)
\(\$ 0.00\)
\(\$ 35.00000\)
\$93,275.00
Total for Group 0046: \$93,275.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\)

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
```

0178 H-OC-SURV 0.00 LS
$\$ 0.00000$
$\$ 0.00$

```

OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$0.00
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS}\) \$0.00000 \$0.00
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 0.5 Signs
\$250,000.00000
\$125,000.00
Total for Group 0049: \$125,000.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 J-MC-TRAF & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 3,000.00000\) & \(\$ 3,060.00\) \\
0502 644E00100 & 1.02 & MILE & \(\$ 820.00\) \\
\begin{tabular}{llll}
EDGE LINE \\
LANE LINE
\end{tabular} & 0.41 & MILE & \(\$ 2,000.00000\) & \\
\hline
\end{tabular}

Group 0051: Other Traffic Control Costs

Description
Supplemental Description
0208 J-OC-TRAF
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{lccc}
\begin{tabular}{l}
0212 \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular} & 1.00 LS & \(\$ 175,000.00000\) & \(\$ 175,000.00\) \\
Group 0053: Other Traffic Signal Costs \\
\begin{tabular}{l}
0213 K-OC-SGNL \\
OTHER COSTS, SIGNALS
\end{tabular} & 1.00 LS & Total for Group 0052:
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{llll}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & \(\$ 0.00\) \\
\begin{tabular}{l}
0504 M-MC-WALL \\
Retaining Walls
\end{tabular} & \(8,400.00\) & SF & \(\$ 135.00000\)
\end{tabular}\(\$ \$ 1,134,000.00\)

Total for Group 0055: \$1,134,000.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \(\$ 0.00\)
Group 0057: Building Demolition

Total for Group 0057: \$0.00
\begin{tabular}{llll}
\begin{tabular}{l}
Group 0058: Noise Barrier \\
0220 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \\
\begin{tabular}{c}
0505 P-MC-NSBR \\
Noise Barrier
\end{tabular} & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0058: \$0.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0059: Other Noise Barrier Costs} \\
\hline \begin{tabular}{l}
0221 P-OC-NSBR \\
OTHER COSTS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \(\$ 5,230,754.00\)
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \(\$ 0.00\)
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \(\$ 0.00\)
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
Total for Group 0068: \(\$ 0.00\)
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lrlrl}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.50 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 0.50 & \text { MILE } & \$ 500,000.00000\end{array}\)
Total for Group 0070: \$250,000.00
Group 0071: Wetland Construction
\begin{tabular}{lcc}
0234 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & 0.00 LS & \(\$ 0.00\) \\
0360 T-MC-WTLD & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & &
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
8:07:25AM
Wednesday, December 01, 2010

\section*{Description Supplemental Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0235 & U-MC-MISC & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, MISCELLANEOUS COSTS} \\
\hline 0236 & U-OC-MISC & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, MISCELLANEOUS COSTS} \\
\hline 0237 & 100E00300 & 0.00 & LS & \$10,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE} \\
\hline 0238 & 623E10000 & 1.00 & LS & \$40,483.66000 & \$40,483.66 \\
\hline \multicolumn{6}{|c|}{CONSTRUCTION LAYOUT STAKES} \\
\hline 0239 & 614E11000 & 1.00 & LS & \$161,934.64000 & \$161,934.64 \\
\hline \multicolumn{6}{|c|}{MAINTAINING TRAFFIC} \\
\hline \multicolumn{6}{|l|}{5\%} \\
\hline 0240 & 619E16020 & 17.00 & MNTH & \$2,500.00000 & \$42,500.00 \\
\hline \multicolumn{6}{|c|}{FIELD OFFICE, TYPE C} \\
\hline 0242 & 624E10000 & 1.00 & LS & \$200,000.00000 & \$200,000.00 \\
\hline \multicolumn{6}{|c|}{MOBILIZATION} \\
\hline 0511 & 103E05000 & 1.00 & LS & \$40,483.66000 & \$40,483.66 \\
\hline \multicolumn{6}{|c|}{PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND} \\
\hline
\end{tabular}

Total for Group 0072: \$485,401.96

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrrr}
0243 V-MC-CNTG & 1.00 & LS & \(\$ 2,145,533.49000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \\
\(25 \%\) & & & \(\$ 2,145,533.49\) \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 0.00000\)
\end{tabular} OTHER COSTS, CONTINGENCY COSTS

Total for Group 0073: \$2,145,533.49

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
\(\$ 0.00\)
Total for Group 0074: \$0.00
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline View & & & & & & & & & & & & & tes & & \\
\hline Acquisition & Unit (SF) or (Acreage) & X & Cost/Unit (\$\$/SF) (\$\$/Acre) & Subtotal Land Value & + & Structure Values (if Taken) & + & Damages (Loss in Value to the Residue) & Subtotal Structures \& Damages & \(=\) & Total Non Labor Acquisition Costs & Parcel Count & Total Takes & \begin{tabular}{l}
Partial \\
Takes
\end{tabular} & No. of Structures Impacted \\
\hline -Residential & 0 & x & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & \(=\) & \$0.00 & 0 & 0 & 0 & 0 \\
\hline -Commercial & 0.01 & x & \$702,025.81 & \$7,020 & + & 0 & + & N/A & \$0.00 & \(=\) & \$7,020.26 & 1 & 0 & 1 & 0 \\
\hline -Industrial & 0 & x & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & = & \$0.00 & 0 & 0 & 0 & 0 \\
\hline -Agricultural & 0 & x & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & = & \$0.00 & 0 & 0 & 0 & 0 \\
\hline Relocation & Unit (Displacement) & x & *RHP/ & /*RSP & + & Move Cost & + & Reestablis & shment & \(=\) & Total Non Labor RAP Costs & & \begin{tabular}{l}
amount of tim \\
all RAP parce
\end{tabular} & \begin{tabular}{l}
necessary \\
\(=\) (months)
\end{tabular} & relocate 18 \\
\hline -Residential Owner Occupant Tenant & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & x & \(\$ 34\),
\(\$ 10\), & & \[
\begin{aligned}
& + \\
& + \\
& +
\end{aligned}
\] & \[
\begin{aligned}
& \$ 6,000 \\
& \$ 1,750
\end{aligned}
\] & & & & \(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0
\end{aligned}
\] & Estim & number of yeas isition begins = & until proj & \begin{tabular}{l}
wide R/W \\
75
\end{tabular} \\
\hline -Commerical/Farm/NPO
Owner
Tenant & \[
\begin{aligned}
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{array}{|l}
\hline x \\
x
\end{array}
\] & \[
\begin{aligned}
& \$ 15,000 \\
& \$ 15,000 \\
& \hline
\end{aligned}
\] & +
+
+ & & & \(=\)
\(=\)
\(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0 \\
& \hline
\end{aligned}
\] & & & & \\
\hline -Personal Property & 0 & <18 & & & x & \$1,000 & & & & \(=\) & \$0 & & & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\(\{[\) (Total Cost of Acquisition Cost \() \times 0.90] \times 0.025\}+\{[\) (Total of Acquisition Cost \() \times 0.15] \times 1.20\}+\{[(\) Total of Acquisition Cost) \(\times 0.10] \times 1.50\}=\) Contingency}} & \multicolumn{4}{|c|}{Contingency
(Incidentals, Admin. Review \& Appropriation)} & 2474.64098 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
*RHP - Replacement Housing Payment \\
*RSP - Rent Supplemental Payment \\
*NPO - Non-Profit Organization
\end{tabular}}} \\
\hline & & & & & & & \multicolumn{4}{|c|}{Total Non Labor R/W Costs} & \$9,494.90 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & x & Unit Price & = & Total Cost \\
\hline Titles & 1 & x & \$400 & = & \$400 \\
\hline \begin{tabular}{l}
Appraisal \\
-Simple \\
-Detailed
\end{tabular} & \[
1
\] & \[
\left|\begin{array}{l}
x \\
x
\end{array}\right|
\] & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 4,500
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Appraisal Review \\
-Simple \\
-Detailed
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\left|\begin{array}{l}
x \\
x
\end{array}\right|
\] & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \(=\)
\(=\)
\(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 2,000
\end{gathered}
\] \\
\hline Negotiations & 1 & x & \$1,100 & = & \$1,100 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\left|\begin{array}{l}
x \\
x \\
x
\end{array}\right|
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\)
\(=\)
\(=\)
\(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0 \\
& \$ 0
\end{aligned}
\] \\
\hline Closings & 1 & x & \$400 & = & \$400 \\
\hline Project Management & 1 & x & \$550 & = & \$550 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & = & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$8,950 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpacts of the priet on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates hat involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The person making the cost estimate may adjust the igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternativ, alternative, the step in the PDP process and
person(s) performing the estimate.
Comments
Cost/Unit were generated from auditors tax card data.
\begin{tabular}{|r|c|}
\hline Total Labor Costs & \(\$ 8,950.00\) \\
\hline Total Non Labor R/W Costs & \(\$ 9,494.90\) \\
\hline Inflation Adjustments & \(\$ 1,125.14\) \\
\hline Total R/W Costs & \(\$ 19,570.04\) \\
\hline
\end{tabular}

\title{
Estimate Alt I OH cont 3
}

\author{
Estimated Cost: \(\$ 22,959,232.28\)
}

Contingency: 32.90\%
Estimated Total: \$30,512,819.70

OH-3 Ezzard Charles
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlr}
0001 A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & \(21,262.00\) & SY & \(\$ 8.00000\)
\end{tabular}

PAVEMENT REMOVED

Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlrr}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \\
\begin{tabular}{l}
0344 203E10000 \\
EXCAVATION
\end{tabular} & \(40,911.00\) & CY & \(\$ 8.00000\) & \(\$ 327,288.00\)
\end{tabular}

Total for Group 0003: \$327,288.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0345 & \(40,911.00\) & CY & \(\$ 6.00000\) & \(\$ 245,466.00\)
\end{tabular}

Total for Group 0005: \$245,466.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & & \\
\begin{tabular}{l}
O347 205E10300 \\
LIME
\end{tabular} & & & \(\$ 5.00000\)
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{ccccc}
0012 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 10.00000\) & \(\$ 0.00\) \\
\(0465 \quad 622 E 10060\) & 0.00 & FT & & \\
8:11:07AM & & & & Page 2 of 12
\end{tabular}

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement
0016 A-MC-RDWY \(27,862.00\) SY MAJOR COST DRIVERS, ROADWAY 27,862.00 SY MAJOR COST DRIVERS, ROADWAY

Total for Group 0010: \(\$ 69,655.00\)
Group 0011: Subgrade Treatment - Undercut \& Backfill
0017 A-MC-RDWY \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, ROADWAY
Total for Group 0011: \$0.00
\begin{tabular}{|c|c|c|c|c|}
\hline Group 0012: Other Roadway Costs & & & & \\
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \quad 201 E 21800 \\
& \text { TREE REMOVED, } 18 " \text { SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, } 30 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, 48" SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0026 202E11000 \\
STRUCTURE REMOVED
\end{tabular} & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER } 24 "
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0029 \text { 202E38000 } \\
& \text { GUARDRAIL REMOVED }
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \text { 202E58100 } \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0033 \text { 202E75000 } \\
& \text { FENCE REMOVED }
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

\section*{Description Supplemental Description}

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000
\begin{tabular}{lll}
0.00 SY & \(\$ 0.81000\) & \(\$ 0.00\) \\
0.00 FT & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular} SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
\begin{tabular}{lrr}
0.00 & FT & \(\$ 14.00000\) \\
0.00 & EACH & \(\$ 1,411.29597\)
\end{tabular}

0038 606E22000
0.00 EACH
\$1,411.29597
\(\$ 0.00\)
ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500
0.00 EACH \(\$ 1,712.52574\)
\(\$ 0.00\)

ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EACH IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 AGGREGATE BASE For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\(\$ 731.31641\)
\(\$ 0.00\)
GATE, TYPE 47 For Fencing
0426 625E32000
0.00 EACH \(\$ 0.00000\)
\(\$ 0.00\) GROUND ROD For Fencing
0466
0.00
\(\$ 0.00000\)
Total for Group 0012: \$0.00

\section*{Group 0014: Seeding \& Mulching / Sodding}
\begin{tabular}{lrlrr}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & \(659 E 10000\) & \(14,738.00\) & SY & \(\$ 1.00000\) \\
SEEDING AND MULCHING & 0.00 & SY & \(\$ 15.00000\) & \(\$ 14,738.00\) \\
0531 & \(660 E 25000\) & 0.0000
\end{tabular}

Total for Group 0014: \$14,738.00
Group 0015: Rock Channel Protection
\begin{tabular}{lrlrl}
0047 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY & \(\$ 75.00000\)
\end{tabular}

Total for Group 0015: \(\$ 0.00\)
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
\(\$ 0.00000\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 50,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & \(\$ 50,000.00\) \\
047 & \(832 E 20000\) & \(24,000.00\) & EACH
\end{tabular}

Total for Group 0016: \$74,000.00
\(\left.\begin{array}{llll}\begin{array}{c}\text { Group 0017: Other Erosion Control Costs } \\ \text { 0049 670E00700 } \\ \text { DITCH EROSION PROTECTION }\end{array} & 0.00 & \text { SY } & \\ \begin{array}{c}\text { 0050 B-OC-ERCO } \\ \text { OTHER COSTS, EROSION CONTROL }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrlrr}
0059 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0018: \$131,288.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG \(\quad 0.00\) LS \(\$ 0.00000 \quad \$ 0.00\) \(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}\) MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
\(\$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & 0.00 & FT & \(\$ 550.00000\) \\
0476 C-MC-DRNG & & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
\begin{tabular}{l}
8:11:07AM \\
Wednesday, December 01, 2010
\end{tabular} & & & Page 5 of 12
\end{tabular}

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
```

0 4 7 7 ~ C - M C - D R N G ~ 0 . 0 0 ~ E A C H ~
MAJOR COST DRIVERS, DRAINAGE
Concrete - Headwalls/wingwalls

```

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH
\$1,500.00000
\(\$ 0.00\)
MAJOR COST DRIVERS, DRAINAGE
Concrete Masonry
Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
Group 0025: Closed Storm System

Total for Group 0025: \$151,500.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{cccc}
0095 D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0494 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & \\
Includes 6" Agg Base and Subgrade Compaction & & \(\$ 0.00\) \\
\begin{tabular}{l}
8:11:07AM \\
Wednesday, December 01, 2010
\end{tabular} & & Page 6 of 12
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{llll}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lllll}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{lrlrl}
0122 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0497 & D-MC-PVMT & \(8,907.00\) & SY & \(\$ 68.00000\)
\end{tabular}

Total for Group 0031: \$605,676.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & \(18,955.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$777,155.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{llll}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & & &
\end{tabular}

Total for Group 0041: \$0.00
\(\left.\begin{array}{lllll}\text { Group 0042: Water Works } \\ \begin{array}{c}0164 \text { E-MC-WATR } \\ \text { MAJOR COST DRIVERS, WATER LINE }\end{array} & 0.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

8:11:07AM
Wednesday, December 01, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
0173 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, LIGHTING & 0.00 & EACH & \(\$ 469,000.00000\) & \(\$ 0.00\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 G-MC-LTNG & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0045: \$0.00
\begin{tabular}{lrrr}
Group OO46: Lighting - Continuous Roadway & \\
0176 G-MC-LTNG & 1.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LIGHTING & & & \\
\begin{tabular}{c}
0500 G-MC-LTNG \\
Lighting - Continuous
\end{tabular} & \(4,966.00\) & FT & \(\$ 35.00000\)
\end{tabular}

Total for Group 0046: \$173,810.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \$0.000

Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
\begin{tabular}{llll}
\(0178 \mathrm{H}-\mathrm{OC}-\) SURV & 0.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, TRAFFIC SURVEILLANCE & &
\end{tabular}

Total for Group 0048: \$0.00
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS}\) \$0.00000 \$0.00
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF
0.94 MILE
\$250,000.00000
\$235,000.00
Signs
Total for Group 0049: \$235,000.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 J-MC-TRAF & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 7,320.00\) \\
0502 644E00100 & 2.44 & MILE & \(\$ 3,000.00000\) & \(\$ 320.00\) \\
\begin{tabular}{llll}
EDGE LINE \\
LANE LINE
\end{tabular} & 0.16 & MILE & \(\$ 2,000.00000\) & \\
& & & Total for Group 0050: \(\$ 7,640.00\)
\end{tabular}

Group 0051: Other Traffic Control Costs

Description
Supplemental Description
\begin{tabular}{llll}
0208 J-OC-TRAF & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{lccc}
\begin{tabular}{l}
0212 \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular} & 4.00 EACH & \(\$ 175,000.00000\) & \(\$ 700,000.00\) \\
& & Total for Group 0052: \$700,000.00 \\
Group 0053: Other Traffic Signal Costs \\
\begin{tabular}{l}
0213 K-OC-SGNL \\
OTHER COSTS, SIGNALS
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{lllll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{lrlrr}
0216 M-MC-WALL \\
MAJOR COST DRIVERS, RETAINING WALLS & 1.00 & LS & \(\$ 0.00000\) & \\
\begin{tabular}{l}
0504 M-MC-WALL \\
Retaining Walls
\end{tabular} & \(38,583.00\) & SF & \(\$ 135.00000\) & \(\$ 5,208,705.00\)
\end{tabular}

Total for Group 0055: \$5,208,705.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \$0.00
Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0532 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{REMOVAL MISC.:} \\
\hline \multicolumn{6}{|c|}{Radio Tower} \\
\hline 0533 & 202E56101 & 0.00 & EACH & \$7,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Residential} \\
\hline 0534 & 202E56101 & 0.00 & EACH & \$12,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline 0535 & 202E56101 & 0.00 & EACH & \$15,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Commercial} \\
\hline 0536 & 202E56101 & 0.00 & EACH & \$30,000.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0057: \$0.00

\section*{Group 0058: Noise Barrier}
\begin{tabular}{lrlll}
0220 & P-MC-NSBR & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, NOISE BARRIER & & & \(\$ 0.00\) \\
\begin{tabular}{lll}
0505 & P-MC-NSBR & \(13,370.00\)
\end{tabular} & SF & \(\$ 25.00000\) & \(\$ 334,250.00\) \\
Noise Barrier & & & &
\end{tabular}

Total for Group 0058: \$334,250.00
\begin{tabular}{ccccc}
Group 0059: Other Noise Barrier Costs & & \\
\begin{tabular}{c}
022 \\
OTHER COC-NSBR
\end{tabular} & 1.00 & Ls & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
O368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \$7,670,127.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \(\$ 0.00\)
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lrlrl}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.94 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 0.94 & \text { MILE } & \$ 500,000.00000\end{array}\)
Total for Group 0070: \$470,000.00
Group 0071: Wetland Construction
\begin{tabular}{lcc}
0234 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & & \(\$ 0.00\) \\
0360 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
8:11:07AM
Wednesday, December 01, 2010

\section*{Description Supplemental Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0235 & U-MC-MISC & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, MISCELLANEOUS COSTS} \\
\hline 0236 & U-OC-MISC & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, MISCELLANEOUS COSTS} \\
\hline 0237 & 100E00300 & 0.00 & LS & \$10,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE} \\
\hline 0238 & 623E10000 & 1.00 & LS & \$86,831.97000 & \$86,831.97 \\
\hline \multicolumn{6}{|c|}{CONSTRUCTION LAYOUT STAKES} \\
\hline 0239 & 614E11000 & 1.00 & LS & \$347,327.88000 & \$347,327.88 \\
\hline \multicolumn{6}{|c|}{MAINTAINING TRAFFIC} \\
\hline 0240 & 619E16020 & 32.00 & MNTH & \$2,500.00000 & \$80,000.00 \\
\hline \multicolumn{6}{|c|}{FIELD OFFICE, TYPE C} \\
\hline 0242 & 624E10000 & 1.00 & LS & \$400,000.00000 & \$400,000.00 \\
\hline \multicolumn{6}{|c|}{MOBILIZATION} \\
\hline 0511 & \(103 E 05000\) & 1.00 & LS & \$86,831.97000 & \$86,831.97 \\
\hline \multicolumn{6}{|c|}{PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND
\(0.5 \%\)} \\
\hline
\end{tabular}

Total for Group 0072: \$1,000,991.82

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrrr}
0243 V-MC-CNTG & 1.00 & LS & \(\$ 4,591,846.46000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \\
\(25 \%\) & & & \(\$ 4,591,846.46\) \\
0244 & & & \(\$ 0.00000\)
\end{tabular}

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
\(\$ 0.00000\)
Total for Group 0074: \$0.00
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline View & & & & & & & & & & & & & tes & & \\
\hline Acquisition & Unit (SF) or (Acreage) & X & Cost/Unit (\$\$/SF) (\$\$/Acre) & Subtotal Land Value & + & Structure Values (if Taken) & + & Damages (Loss in Value to the Residue) & Subtotal Structures \& Damages & \(=\) & Total Non Labor Acquisition Costs & Parcel Count & Total Takes & \begin{tabular}{l}
Partial \\
Takes
\end{tabular} & No. of Structures Impacted \\
\hline -Residential & 0.01 & \(\times\) & \$101,498.99 & \$1,015 & + & 0 & + & N/A & \$0.00 & \(=\) & \$1,014.99 & 1 & 0 & 1 & 0 \\
\hline -Commercial & 0.01 & x & \$91,923.04 & \$919 & + & 0 & + & N/A & \$0.00 & \(=\) & \$919.23 & 2 & 0 & 2 & 0 \\
\hline -Industrial & 0 & x & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & = & \$0.00 & 0 & 0 & 0 & 0 \\
\hline -Park & 0.28 & x & \$955.66 & \$268 & + & 0 & + & N/A & \$0.00 & = & \$267.58 & 1 & 0 & 1 & 0 \\
\hline Relocation & Unit (Displacement) & x & *RHP/ & /*RSP & + & Move Cost & + & Reestablis & shment & \(=\) & Total Non Labor RAP Costs & & \begin{tabular}{l}
amount of tim \\
all RAP parc
\end{tabular} & \begin{tabular}{l}
necessary \\
= (months)
\end{tabular} & relocate \\
\hline -Residential Owner Occupant Tenant & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & x & \(\$ 34\),
\(\$ 10\), & & \[
\begin{aligned}
& + \\
& + \\
& +
\end{aligned}
\] & \[
\begin{aligned}
& \$ 6,000 \\
& \$ 1,750
\end{aligned}
\] & & & & \(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0
\end{aligned}
\] & Estim & number of yea uisition begins = & until proj & \begin{tabular}{l}
wide R/W \\
75
\end{tabular} \\
\hline -Commerical/Farm/NPO
Owner
Tenant & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \$ 15,000 \\
& \$ 15,000 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& + \\
& + \\
& +
\end{aligned}
\] & & & \(=\)
\(=\)
\(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0 \\
& \hline
\end{aligned}
\] & & & & \\
\hline -Personal Property & 0 & < & & & x & \$1,000 & & & & \(=\) & \$0 & & & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\(\{[(\) Total Cost of Acquisition Cost \() \times 0.90] \times 0.025\}+\{[\) (Total of Acquisition Cost \() \times 0.15] \times 1.20\}+\{[(\) Total of Acquisition Cost) \(x 0.10] \times 1.50\}=\) Contingency}} & \multicolumn{4}{|c|}{Contingency
(Incidentals, Admin. Review \& Appropriation)} & 776.1362978 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
*RHP - Replacement Housing Payment \\
*RSP - Rent Supplemental Payment \\
*NPO - Non-Profit Organization
\end{tabular}}} \\
\hline & & & & & & & \multicolumn{4}{|c|}{Total Non Labor R/W Costs} & \$2,977.94 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & x & Unit Price & = & Total Cost \\
\hline Titles & 4 & x & \$400 & = & \$1,600 \\
\hline \begin{tabular}{l}
Appraisal \\
-Simple \\
-Detailed
\end{tabular} & \[
4
\] & \[
\begin{aligned}
& x \\
& x
\end{aligned}
\] & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \[
=
\] & \[
\begin{gathered}
\$ 0 \\
\$ 18,000
\end{gathered}
\] \\
\hline Appraisal Review -Simple -Detailed & \[
\begin{aligned}
& 0 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x
\end{aligned}
\] & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \[
=
\] & \[
\begin{gathered}
\$ 0 \\
\$ 8,000
\end{gathered}
\] \\
\hline Negotiations & 4 & x & \$1,100 & \(=\) & \$4,400 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0 \\
& \$ 0
\end{aligned}
\] \\
\hline Closings & 4 & x & \$400 & \(=\) & \$1,600 \\
\hline Project Management & 4 & x & \$550 & = & \$2,200 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & = & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$35,800 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Wajor Projects) and requires some knowledge of the mpats of troject on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates hat involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The person making the cost estimate may adjust the igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternativ, alternative, the step in the PDP process and
\begin{tabular}{|r|c|}
\hline Total Labor Costs & \(\$ 35,800.00\) \\
\hline Total Non Labor R/w Costs & \(\$ 2,977.94\) \\
\hline Inflation Adjustments & \(\$ 2,365.45\) \\
\hline Total R/W Costs & \(\$ 41,143.39\) \\
\hline
\end{tabular}

Comments
Changed "Agriculture" category itors tax card data the Queensgate Ballfields.

\title{
Estimate Alt I OH cont 4
}

\author{
Estimated Cost: \$29,959,628.59
}

Contingency: 32.90\%
Estimated Total: \$39,816,346.40
OH-4 Seventh St, Eigth St, Ninth St
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(7,488.00\) & SY & \(\$ 8.00000\)
\end{tabular}

\section*{PAVEMENT REMOVED}

Total for Group 0001: \$59,904.00
Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlrr}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0003: \$361,664.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
& & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0345 & \(203 E 20000\) & \(45,208.00\) & CY & \(\$ 6.00000\)
\end{tabular}

Total for Group 0005: \$271,248.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
0010 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline 0346 205E10050 & 0.00 & CY & \$7.00000 & \$0.00 \\
\hline LIME STABILIZED EMBANKMENT & & & & \\
\hline 0347 205E10300 & 0.00 & TON & \$5.00000 & \$0.00 \\
\hline LIME & & & & \\
\hline
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{ccccc}
0012 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 10.00000\) & \(\$ 0.00\) \\
\(0465 \quad\) 622E10060 & 0.00 & FT & & \\
\begin{tabular}{c}
8:11:35AM \\
Wednesday, December 01, 2010
\end{tabular} & & & & Page 2 of 12
\end{tabular}

CONCRETE BARRIER, SINGLE SLOPE, TYPE B
Total for Group 0008: \$0.00

Total for Group 0009: \$0.00

\title{
Group 0010: Subgrade Treatment - Cement \\ 0016 A-MC-RDWY 17,679.00 SY MAJOR COST DRIVERS, ROADWAY \\ \(\$ 2.50000\) \\ \(\$ 44,197.50\) \\ Total for Group 0010: \$44,197.50 \\ Group 0011: Subgrade Treatment - Undercut \& Backfill \\ 0017 A-MC-RDWY \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\) \\ MAJOR COST DRIVERS, ROADWAY
}

Total for Group 0011: \$0.00

\section*{Group 0012: Other Roadway Costs}
\begin{tabular}{|c|c|c|c|c|}
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, } 30 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, } 48 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0026 \text { 202E11000 } \\
& \text { STRUCTURE REMOVED }
\end{aligned}
\] & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER } 24 "
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0029 \text { 202E38000 } \\
& \text { GUARDRAIL REMOVED }
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \quad 202 E 58100 \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0033 \text { 202E75000 } \\
& \text { FENCE REMOVED }
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

8:11:35AM
Wednesday, December 01, 2010

Line \# Item Number

\section*{Description} Supplemental Description

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000 0.00
SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
GUARDRAIL, TYPE 5
0038 606E22000 ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EACH IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 0.00 CY AGGREGATE BASE For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500 GATE, TYPE 47 For Fencing
0426 625E32000 GROUND ROD For Fencing
0466
0.00 EACH
0.00 EACH
0.00
\(\$ 0.00000\)
Total for Group 0012: \$0.00

Group 0014: Seeding \& Mulching / Sodding
\begin{tabular}{lrlrr}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & 659E10000 & \(5,080.00\) & SY & \(\$ 1.00000\) \\
SEEDING AND MULCHING & 0.00 & SY & \(\$ 15.00000\) & \(\$ 5,080.00\) \\
0531 & 660E25000 & 0.00 & & \(\$ 0.00\)
\end{tabular} SODDING STAKED

Total for Group 0014: \$5,080.00
Group 0015: Rock Channel Protection
\begin{tabular}{lrrrr}
0047 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY & \(\$ 75.00000\)
\end{tabular}

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
\(\$ 0.00000\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 50,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & \(\$ 50,000.00\) \\
\(0471832 E 20000\) & \(24,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$74,000.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0017: Other Erosion Control Costs} \\
\hline \begin{tabular}{l}
0049 670E00700 \\
DITCH EROSION PROTECTION
\end{tabular} & 0.00 & SY & \$0.00000 & \$0.00 \\
\hline & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0051 \text { 659E00100 } \\
& \text { SOIL ANALYSIS TEST }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline 0052 659E00300
TOPSOIL & 0.00 & CY & \$0.00000 & \$0.00 \\
\hline 0053 659E14000
REPAIR SEEDING AND MULCHING & 0.00 & SY & \$0.00000 & \$0.00 \\
\hline 0054 659E15000
INTER-SEEDING & 0.00 & SY & \$0.71000 & \$0.00 \\
\hline 0055 659E20000 COMMERCIAL FERTILIZER & 0.00 & TON & \$410.06813 & \$0.00 \\
\hline 0056 LIME 659 E31000
Liche & 0.00 & ACRE & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0057659 \text { E35000 } \\
& \text { WATER }
\end{aligned}
\] & 0.00 & MGAL & \$5.00000 & \$0.00 \\
\hline 0058 659E40000
MOWING & 0.00 & MSF & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrllr}
0059 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0018: \$90,176.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000\) \$0.00 \(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}\) MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
\(\$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{ccccc}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \(\$ 0.00\) \\
0476 C-MC-DRNG & 0.00 & FT & \(\$ 550.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & & Page 5 of 12
\end{tabular}

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
\begin{tabular}{llll}
0477 C-MC-DRNG & 0.00 & EACH & \(\$ 1,500.00000\)
\end{tabular}\(\$ \$ 0.00\)

Concrete - Headwalls/wingwalls
Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH
\$1,500.00000
\(\$ 0.00\)
MAJOR COST DRIVERS, DRAINAGE
Concrete Masonry
Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
Group 0025: Closed Storm System

Total for Group 0025: \$34,575.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{cccc}
0095 D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0494 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & \\
Includes 6" Agg Base and Subgrade Compaction & & \(\$ 0.00\) \\
\begin{tabular}{l}
8:11:35AM \\
Wednesday, December 01, 2010
\end{tabular} & & Page 6 of 12
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{llll}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$0.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lllll}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$0.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{lrlrl}
0122 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0497 & D-MC-PVMT & \(3,607.00\) & SY & \(\$ 68.00000\)
\end{tabular}

Total for Group 0031: \(\$ 245,276.00\)
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrrrr}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & \(14,072.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction

Total for Group 0032: \$576,952.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{llll}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & & &
\end{tabular}

Total for Group 0041: \$0.00
\(\left.\begin{array}{lllll}\text { Group 0042: Water Works } \\ \begin{array}{c}0164 \text { E-MC-WATR } \\ \text { MAJOR COST DRIVERS, WATER LINE }\end{array} & 0.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

8:11:35AM
Wednesday, December 01, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
\begin{tabular}{l}
0173 \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
0499 & G-MC-LTNG & 0.00 & EACH & \(\$ 469,000.00000\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
\begin{tabular}{l}
0288 \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG \(5,299.00\) FT
\(\$ 35.00000\)
\$185,465.00
Lighting - Continuous
Total for Group 0046: \$185,465.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\)

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
```

0178 H-OC-SURV 0.00 LS
$\$ 0.00000$
$\$ 0.00$

```

OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$0.00
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS}\) \$0.00000 \$0.00
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 1.0 Signs
\$250,000.00000
\$250,000.00
Total for Group 0049: \$250,000.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 J-MC-TRAF & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 6,000.00\) \\
0502 644E00100 & 2.20 & MILE & \(\$ 3,00000\) & \(\$ 1,900.00\) \\
\begin{tabular}{llll}
EDGE LINE \\
\begin{tabular}{l}
LANE LINE
\end{tabular} & 0.95 & MILE & \(\$ 2,000.00000\)
\end{tabular} \\
\hline
\end{tabular}

Group 0051: Other Traffic Control Costs

8:11:35AM
\begin{tabular}{llll}
0208 & J-OC-TRAF & 1.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
0212 K-MC-SGNL \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular}} & \multirow[t]{2}{*}{1.00} & \multirow[t]{2}{*}{LS} & \$0.00000 & \$0.00 \\
\hline & & & Total & \\
\hline \multicolumn{5}{|l|}{Group 0053: Other Traffic Signal Costs} \\
\hline \begin{tabular}{l}
0213 K-OC-SGNL \\
OTHER COSTS, SIGNALS
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \(\$ 0.00\) \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{lrlrr}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & & \(\$ 135.00000\) & \(\$ 2,556,765.00\)
\end{tabular}

Total for Group 0055: \$2,556,765.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \(\$ 0.00\)
Group 0057: Building Demolition
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0218 & N-MC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, BUILDING DEMOLITION} \\
\hline 0219 & N-OC-DEMO & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, BUILDING DEMOLITION} \\
\hline 0532 & 202E98100 & 0.00 & EACH & \$8,500.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{REMOVAL MISC.:} \\
\hline \multicolumn{6}{|c|}{Radio Tower} \\
\hline 0533 & 202E56101 & 0.00 & EACH & \$30,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Large Commercial} \\
\hline 0534 & 202E56101 & 1.00 & EACH & \$15,000.00000 & \$15,000.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Small Commercial} \\
\hline 0535 & 202E56101 & 0.00 & EACH & \$12,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{BUILDING DEMOLISHED, AS PER PLAN} \\
\hline \multicolumn{6}{|c|}{Large Residential} \\
\hline 0536 & 202E56101 & 0.00 & EACH & \$7,500.00000 & \$0.00 \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
Group 0058: Noise Barrier & & & \\
\begin{tabular}{l}
0220 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{c}
0505 P-MC-NSBR \\
Noise Barrier
\end{tabular} & 0.00 & LS & \(\$ 400.00000\)
\end{tabular}

Total for Group 0058: \$0.00
\(\left.\begin{array}{lllll}\text { Group 0059: Other Noise Barrier Costs } & & \\ \begin{array}{l}\text { 0221 P-OC-NSBR } \\ \text { OTHER COSTS, NOISE BARRIER }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0059: \$0.00

Total for Group 0060: \(\$ 17,136,443.00\)
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs

0224 R-OC-STRC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \(\$ 0.00\)
Group 0063: Temporary Road and Pavement Costs
\begin{tabular}{ll}
0225 S-MC-MNTC & 1.00 LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\end{tabular}

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \(\$ 0.00\)
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lrlrl}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 1.00 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 1.00 & \text { MILE } & \$ 500,000.00000\end{array}\) OTHER COSTS, MAINTENANCE OF TRAFFIC

Group 0071: Wetland Construction
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0234 & T-MC-WTLD & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, WETLAND CONSTRUCTION} \\
\hline 0360 & T-MC-WTLD & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline & OR COST DR & RUCT & & & \\
\hline
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
8:11:35AM
Wednesday, December 01, 2010

\section*{Description Supplemental Description}

Total for Group 0072: \$1,552,457.37

\section*{Group 0073: Design Contingency Costs}
```

    MAJOR COST DRIVERS, CONTINGENCY COSTS
        25%
    0244 V -OC-CNTG $\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00$

``` OTHER COSTS, CONTINGENCY COSTS

Total for Group 0073: \$5,991,925.72

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
\(\$ 0.00\)
Total for Group 0074: \$0.00
\(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline Labor (External) & Unit (Parcels) & x & Unit Price & = & Total Cost \\
\hline Titles & 3 & x & \$400 & = & \$1,200 \\
\hline Appraisal & & & & & \\
\hline -Simple & 1 & \(x\) & \$750 & \(=\) & \$750 \\
\hline -Detailed & 2 & x & \$4,500 & = & \$9,000 \\
\hline Appraisal Review & & & & & \\
\hline -Simple & 1 & \(x\) & \$500 & \(=\) & \$500 \\
\hline -Detailed & 2 & x & \$2,000 & \(=\) & \$4,000 \\
\hline Negotiations & 3 & x & \$1,100 & \(=\) & \$3,300 \\
\hline Relocations & & & & & \\
\hline -Personal Property & 0 & \(x\) & \$1,500 & \(=\) & \$0 \\
\hline -Residential & 0 & \(x\) & \$5,200 & \(=\) & \$0 \\
\hline -Commercial/Farm/*NPO & 0 & x & \$5,600 & = & \$0 \\
\hline Closings & 3 & x & \$400 & \(=\) & \$1,200 \\
\hline Project Management & 3 & x & \$550 & \(=\) & \$1,650 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & \(\times\) & & = & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$21,600 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpacts of the priect on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates that involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The acquire the right of way in a timely manner. igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternative, the step in the PDP process and the
person(s) performing the estimate.

\title{
Estimate Alt I OH cont 5
}

Estimated Cost: \$84,839,975.26
Contingency: 51.30\%
Estimated Total: \$128,362,882.57
Reconstruct I-75 from Findlay to the northern terminus of the corridor
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

\author{
Description Supplemental Description
}

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & 202E23000 & \(104,667.00\) & SY & \(\$ 8.00000\)
\end{tabular}

Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlrr}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \\
\begin{tabular}{c}
0344 203E10000 \\
EXCAVATION
\end{tabular} & \(77,557.00\) & CY & \(\$ 8.00000\) & \(\$ 620,456.00\)
\end{tabular}

Total for Group 0003: \$620,456.00
Group 0004: Excavation - Hazardous
\begin{tabular}{llll}
\begin{tabular}{l}
0006 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & Total for Group 0004: \$0.00
\end{tabular}

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0005: \$707,568.00
Group 0006: Fill - Lime Modified Soil

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow

0011 A-MC-RDWY MAJOR COST DRIVERS, ROADWAY

40,371.00 CY
\(\$ 8.00000\)
\$322,968.00
Total for Group 0007: \$322,968.00

Group 0008: Concrete Barrier
\begin{tabular}{crrrr}
0012 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0465 & \(622 E 10060\) & \(17,612.00\) & FT & \(\$ 110.00000\) \\
\(8: 13: 44 A M\) & & & \(\$ 1,937,320.00\) \\
Wednesday, December 01, 2010 & & & Page 2 of 12
\end{tabular}

\author{
CONCRETE BARRIER, SINGLE SLOPE, TYPE B
}

Total for Group 0008: \$1,937,320.00
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement
0016 A-MC-RDWY
\(136,698.00\) SY

Total for Group 0010: \(\$ 341,745.00\)
Group 0011: Subgrade Treatment - Undercut \& Backfill
\begin{tabular}{llll}
0017 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0011: \$0.00

\section*{Group 0012: Other Roadway Costs}

8:13:44AM
Wednesday, December 01, 2010

\section*{Description Supplemental Description}

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000
\begin{tabular}{lll}
0.00 SY & \(\$ 0.81000\) & \(\$ 0.00\) \\
0.00 & FT & \(\$ 0.00000\)
\end{tabular}

SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 G06E13000
GUARDRAIL, TYPE 5
0038 606E22000
0.00 EACH
\(\$ 14.00000\)
\$46,130.00

ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500
0.00 EACH \$1,712.52574
\(\$ 0.00\)

ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EACH IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 0.00 CY
\(\$ 0.00000\)
\(\$ 0.00\) AGGREGATE BASE For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\(\$ 731.31641\)
\(\$ 0.00\)
GATE, TYPE 47 For Fencing
0426 625E32000
0.00 EACH
\(\$ 0.00000\)
\(\$ 0.00\) GROUND ROD For Fencing
0466
0.00
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0012: \$46,130.00

\section*{Group 0014: Seeding \& Mulching / Sodding}
\begin{tabular}{lllll}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \\
0467 & 0.00 & SY & \(\$ 0.00\) \\
SEEDING AND MULCHING & & & \(\$ 1.00000\) & \(\$ 0.00\) \\
0531 & \(660 E 25000\) & 0.00 & SY & \(\$ 15.00000\)
\end{tabular} SODDING STAKED

Total for Group 0014: \$0.00
Group 0015: Rock Channel Protection
\begin{tabular}{lrrrr}
0047 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00\) \\
0469 & \(601 E 32000\) & 0.00 & CY & \(\$ 75.00000\)
\end{tabular}

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
\(\$ 0.00000\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 50,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & & \(\$ 50,000.00\) \\
\(0471832 E 20000\) & \(35,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$85,000.00
\(\left.\begin{array}{llll}\begin{array}{c}\text { Group 0017: Other Erosion Control Costs } \\ \text { 0049 670E00700 } \\ \text { DITCH EROSION PROTECTION }\end{array} & 0.00 & \text { SY } & \\ \begin{array}{c}\text { 0050 B-OC-ERCO } \\ \text { OTHER COSTS, EROSION CONTROL }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0017: \$0.00
Group 0018: Underdrains
\begin{tabular}{lrllr}
0059 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & & \(\$ 8.00000\)
\end{tabular}

Total for Group 0018: \$509,632.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\) \(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}\) MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
\(\$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \$0.00
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & 0.00 & FT & \(\$ 550.00000\) \\
0476 C-MC-DRNG & & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
\begin{tabular}{l}
8:13:44AM \\
Wednesday, December 01, 2010
\end{tabular} & & & Page 5 of 12
\end{tabular}

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
```

0 4 7 7 ~ C - M C - D R N G ~ 0 . 0 0 ~ E A C H ~
MAJOR COST DRIVERS, DRAINAGE
Concrete - Headwalls/wingwalls

```

Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
0486 C-MC-DRNG
MAJOR COST DRIVERS, DRAINAGE \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH
\(\$ 1,500.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, DRAINAGE
Concrete Masonry
Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
Group 0025: Closed Storm System
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
0077
\]
MAJ & C-MC-DRNG OR COST DRIVERS, DRAINAGE & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline 0489 & 603E13400 & 11,504.00 & FT & \$75.00000 & \$862,800.00 \\
\hline \multicolumn{6}{|l|}{30" CONDUIT, TYPE B (Average size)} \\
\hline 0523 & 604E00800 & 152.00 & EACH & \$1,500.00000 & \$228,000.00 \\
\hline \multicolumn{6}{|l|}{CATCH BASIN, NO. 3A} \\
\hline 0524 & 604E31500 & 15.00 & EACH & \$3,000.00000 & \$45,000.00 \\
\hline \multicolumn{6}{|l|}{MANHOLE, NO. 3} \\
\hline 0525 & 604E36601 & 0.00 & EACH & \$1,250.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{PRECAST REINFORCED CONCRETE OUTLET, AS PER PLAN} \\
\hline 0526 & Special & 0.00 & LS & \$6,400,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Pump Station (Storm) \$0.00} \\
\hline 0527 & Special & 0.00 & EACH & \$5,750.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Stormceptors} \\
\hline 0529 & Special & 0.00 & LS & \$109,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Retention basin improvements} \\
\hline
\end{tabular}

Total for Group 0025: \$1,135,800.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{lrll}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & \(8,030.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$546,040.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lrlll}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & D-MC-PVMT & \(15,773.00\) & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0030: \$1,072,564.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{lrlll}
0122 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0497 & D-MC-PVMT & \(37,642.00\) & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0031: \$2,559,656.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & \(6,383.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$261,703.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{rrrr}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & & &
\end{tabular}

Total for Group 0041: \$0.00
\begin{tabular}{llll}
Group 0042: Water Works \\
\(0164 \quad\) E-MC-WATR \\
MAJOR COST DRIVERS, WATER LINE & 0.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{c}
\(0165 \quad\) E-OC-WATR \\
OTHER COSTS, WATER LINE
\end{tabular} & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

8:13:44AM
Wednesday, December 01, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{llll}
0173 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LIGHTING & 1.00 & EACH & \(\$ 469,000.00000\) \\
0499 G-MC-LTNG & & & Total for Group 0044: \(\$ 469,000.00\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
\begin{tabular}{l}
0288 \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}\(\$ 0.00\)

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG \(9,226.00\) FT
Lighting - Continuous
\(\$ 0.00000\)
\(\$ 0.00\)
\(\$ 35.00000\)
\$322,910.00
Total for Group 0046: \$322,910.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\)

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
0178 H-OC-SURV 1.00 LS
OTHER COSTS, TRAFFIC SURVEILLANCE
\$635,388.64000
\$635,388.64
Total for Group 0048: \(\$ 635,388.64\)
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF 1.7 Signs
\$250,000.00000
\(\$ 437,500.00\)
Total for Group 0049: \$437,500.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 & 1.00 & LS & & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 0.00\) \\
0502 & 11.68 & MILE & \(\$ 3,000.00000\) & \(\$ 35,040.00\) \\
EDGE LINE & & & & \(\$ 23,060.00\)
\end{tabular}

Total for Group 0050: \$58,100.00
Group 0051: Other Traffic Control Costs

8:13:44AM
Wednesday, December 01, 2010

Description
Supplemental Description
\begin{tabular}{llll}
0208 J-OC-TRAF & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{lccc}
\begin{tabular}{l}
0212 \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular} & 3.00 EACH & \(\$ 175,000.00000\) & \(\$ 525,000.00\) \\
& & Total for Group 0052: \(\$ 525,000.00\)
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{lllll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{lrlrr}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & & \(\$ 135.00000\) & \(\$ 15,334,920.00\)
\end{tabular}

Total for Group 0055: \$15,334,920.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \(\$ 0.00\)
Group 0057: Building Demolition

\section*{Description Supplemental Description \\ BUILDING DEMOLISHED, AS PER PLAN \\ Small Residential}

Total for Group 0057: \$60,000.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0058: Noise Barrier} \\
\hline \begin{tabular}{l}
0220 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{Noise Barrier} \\
\hline & & & \multicolumn{2}{|l|}{Total for Group 0058: \$0.00} \\
\hline \multicolumn{5}{|l|}{Group 0059: Other Noise Barrier Costs} \\
\hline \begin{tabular}{l}
0221 P-OC-NSBR \\
OTHER COSTS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \(\$ 29,789,356.00\)
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
OTHER COSTS, STRUCTURES
Contingency
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \$0.00
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
Total for Group 0068: \(\$ 0.00\)
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{llll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS }\end{array}\)
\(\begin{array}{llll}0512 & \text { S-OC-MNTC } & 1.75 & \text { MILE } \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & \$ 500,000.00000 & \$ 875,000.00\end{array}\)
Total for Group 0070: \$875,000.00
Group 0071: Wetland Construction
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0234 & T-MC-WTLD & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, WETLAND CONSTRUCTION} \\
\hline \multicolumn{2}{|l|}{0360 T-MC-WTLD 0.00 LS} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, WETLAND CONSTRUCTION} \\
\hline
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
8:13:44AM
Wednesday, December 01, 2010

\section*{Description Supplemental Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0235 & U-MC-MISC & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, MISCELLANEOUS COSTS} \\
\hline 0236 & U-OC-MISC & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, MISCELLANEOUS COSTS} \\
\hline 0237 & 100E00300 & 1.00 & LS & \$10,000.00000 & \$10,000.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE} \\
\hline 0238 & \(623 E 10000\) & 1.00 & LS & \$320,871.26000 & \$320,871.26 \\
\hline \multicolumn{6}{|c|}{CONSTRUCTION LAYOUT STAKES} \\
\hline 0239 & 614E11000 & 1.00 & LS & \$1,283,485.05000 & \$1,283,485.05 \\
\hline \multicolumn{6}{|c|}{MAINTAINING TRAFFIC} \\
\hline 0240 & 619E16020 & 65.00 & MNTH & \$2,500.00000 & \$162,500.00 \\
\hline \multicolumn{6}{|c|}{FIELD OFFICE, TYPE C} \\
\hline 0242 & 624E10000 & 1.00 & LS & \$1,600,000.00000 & \$1,600,000.00 \\
\hline \multicolumn{6}{|c|}{MOBILIZATION} \\
\hline 0511 & 103E05000 & 1.00 & LS & \$320,871.26000 & \$320,871.26 \\
\hline & \multicolumn{4}{|l|}{PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND} & \\
\hline
\end{tabular}

Total for Group 0072: \$3,697,727.57

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrlr}
0243 V-MC-CNTG & 1.00 & LS & \(\$ 16,967,995.05000\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \\
\(25 \%\) & & & \(\$ 16,967,995.05\) \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 0.00000\)
\end{tabular} OTHER COSTS, CONTINGENCY COSTS

Total for Group 0073: \$16,967,995.05

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
\(\$ 0.00000\)
Total for Group 0074: \$0.00
\(\qquad\)
\(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Macro View & & & & & \\
\hline Labor (External) & Unit (Parcels) & x & Unit Price & = & Total Cost \\
\hline Titles & 20 & X & \$400 & = & \$8,000 \\
\hline Appraisal -Simple -Detailed & \[
\begin{gathered}
7 \\
13
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x
\end{aligned}
\] & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\)
\(=\) & \[
\begin{gathered}
\$ 5,250 \\
\$ 58,500
\end{gathered}
\] \\
\hline Appraisal Review -Simple -Detailed & \[
\begin{gathered}
7 \\
13
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\$ 500 \\
\$ 2,000 \\
\hline
\end{gathered}
\] & \(=\) & \[
\begin{aligned}
& \$ 3,500 \\
& \$ 26,000
\end{aligned}
\] \\
\hline Negotiations & 20 & X & \$1,100 & = & \$22,000 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\)
\(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 0 \\
\$ 16,800
\end{gathered}
\] \\
\hline Closings & 20 & x & \$400 & = & \$8,000 \\
\hline Project Management & 20 & x & \$550 & = & \$11,000 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & X & & = & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$159,050 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data
Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpats of projet on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates that involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The person making the cost estimate may adjust the gures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternative, the step in the PDP process and the
person(s) performing the estimate.
Comments
Cost/Unit were generated from auditors tax card data
\begin{tabular}{|r|c|}
\hline Total Labor Costs & \(\$ 159,050.00\) \\
\hline Total Non Labor R/W Costs & \(\$ 1,037,106.54\) \\
\hline Inflation Adjustments & \(\$ 98,084.84\) \\
\hline Total R/W Costs & \(\$ 1,294,241.38\) \\
\hline
\end{tabular}

\title{
Estimate Alt I OH cont 6
}

Estimated Cost: \(\$ 31,450,188.58\)
Contingency: 57.60\%
Estimated Total: \$49,565,497.20

Reconstruction from north of Linn St to Findlay St
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(72,055.00\) & SY & \(\$ 8.00000\)
\end{tabular}

\title{
PAVEMENT REMOVED
}

Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlll}
\begin{tabular}{l}
0004 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
0344 203E10000 \\
EXCAVATION
\end{tabular} & \(171,489.00\) & CY & \(\$ 8.00000\) & \(\$ 1,371,912.00\)
\end{tabular}

Total for Group 0003: \$1,371,912.00
Group 0004: Excavation - Hazardous
0006 A-MC-RDWY
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0004: \$0.00

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0345 & 203E20000 & \(171,489.00\) & CY & \(\$ 6.00000\)
\end{tabular}

Total for Group 0005: \$1,028,934.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{lllll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY & 0.00 & CY & \(\$ 7.00000\) & \(\$ 0.00\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & & & \\
\begin{tabular}{l}
0347 205E10300 \\
LIME
\end{tabular} & 0.00 & TON & \(\$ 5.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\) MAJOR COST DRIVERS, ROADWAY

Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{crrrr}
0012 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0465 & \(10,712.00\) & FT & \(\$ 110.00000\) & \(\$ 1,178,320.00\) \\
8:12:26AM & & & & Page 2 of 12
\end{tabular}

\author{
CONCRETE BARRIER, SINGLE SLOPE, TYPE B
}

Total for Group 0008: \$1,178,320.00
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement
\begin{tabular}{l}
97,995.00 SY \\
0016 A-MC-RDWY
\end{tabular}\(\quad \$ 2.50000 \quad \$ 244,987.50\)

Total for Group 0010: \(\$ 244,987.50\)
Group 0011: Subgrade Treatment - Undercut \& Backfill
\begin{tabular}{llll}
0017 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0011: \$0.00

\section*{Group 0012: Other Roadway Costs}
\begin{tabular}{|c|c|c|c|c|}
\hline 0019 A-OC-RDWY OTHER COSTS, ROADWAY Contingency & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0020 \text { 201E11000 } \\
& \text { CLEARING AND GRUBBING }
\end{aligned}
\] & 0.00 & LS & \$856,500.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0021 \text { 201E21800 } \\
& \text { TREE REMOVED, } 18 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$250.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0022 \text { 201E23000 } \\
& \text { TREE REMOVED, } 30 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$405.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0023 \text { 201E24800 } \\
& \text { TREE REMOVED, } 48 \text { " SIZE }
\end{aligned}
\] & 0.00 & EACH & \$772.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0026 \text { 202E11000 } \\
& \text { STRUCTURE REMOVED }
\end{aligned}
\] & 0.00 & LS & \$9,310.13000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0028 \text { 202E35200 } \\
& \text { PIPE REMOVED, OVER } 24 "
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0029 \text { 202E38000 } \\
& \text { GUARDRAIL REMOVED }
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0030 \text { 202E42206 } \\
& \text { ANCHOR ASSEMBLY REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0031 \text { 202E58000 } \\
& \text { MANHOLE REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0032 \quad 202 E 58100 \\
& \text { CATCH BASIN REMOVED }
\end{aligned}
\] & 0.00 & EACH & \$0.00000 & \$0.00 \\
\hline \[
\begin{aligned}
& 0033 \text { 202E75000 } \\
& \text { FENCE REMOVED }
\end{aligned}
\] & 0.00 & FT & \$0.00000 & \$0.00 \\
\hline 0034 204E45000 & 0.00 & HOUR & \$126.59000 & \$0.00 \\
\hline
\end{tabular}

8:12:26AM
Wednesday, December 01, 2010

\section*{Description Supplemental Description}

PROOF ROLLING
0035 204F10000

SUBGRADE COMPACTION
0036 451E30000
SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
GUARDRAIL, TYPE 5
0038 606E22000
0.00 EACH
\$1,411.29597
\(\$ 0.00\)

ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500
0.00 EACH \$1,712.52574
\(\$ 0.00\)

ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EACH IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 0.00 FT FENCE, TYPE 47 For Fencing
0423 304E20000 AGGREGATE BASE For Fencing
0424 601E32100 \(0.00 \mathrm{CY} \quad \$ 0.00000 \quad \$ 0.00\) ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\$731.31641
\(\$ 0.00\)
GATE, TYPE 47 For Fencing
0426 625E32000
0.00 EACH
\(\$ 0.00000\)
\(\$ 0.00\) GROUND ROD For Fencing
0466
0.00
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0012: \$32,074.00

\section*{Group 0014: Seeding \& Mulching / Sodding}
\begin{tabular}{lllll}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & 0.00 & SY & \(\$ 1.00000\) & \(\$ 0.00\) \\
SEEDING AND MULCHING & & & & \(\$ 0.00\)
\end{tabular} SODDING STAKED

Total for Group 0014: \$0.00
Group 0015: Rock Channel Protection
\begin{tabular}{lrrr}
0047 & B-MC-ERCO & 1.00 & LS \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00000\) \\
0469 & \(001 E 32000\) & 0.00 & CY
\end{tabular}

Total for Group 0015: \(\$ 0.00\)
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
\(\$ 0.00000\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrr}
\(0470 \quad 832\) E10000 & 1.00 & LS & \(\$ 50,000.00000\) \\
STORM WATER POLLUTION PREVENTION PLAN & & \(\$ 50,000.00\) \\
\(0471 \quad 832 E 20000\) & \(42,000.00\) & EACH & \(\$ 1.00000\)
\end{tabular}

Total for Group 0016: \$92,000.00
\(\left.\begin{array}{llll}\begin{array}{c}\text { Group 0017: Other Erosion Control Costs } \\ \text { 0049 670E00700 } \\ \text { DITCH EROSION PROTECTION }\end{array} & 0.00 & \text { SY } & \\ \begin{array}{c}\text { 0050 B-OC-ERCO } \\ \text { OTHER COSTS, EROSION CONTROL }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0017: \$0.00
\begin{tabular}{lrrrr}
Group 0018: Underdrains & & & \\
\begin{tabular}{c}
0059 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
0062 605E05100 \\
4" SHALLOW PIPE UNDERDRAINS
\end{tabular} & \(49,472.00\) & FT & \(\$ 8.00000\) & \(\$ 395,776.00\)
\end{tabular}

Total for Group 0018: \$395,776.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\) \(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}\) MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
\(\$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \(\$ 0.00\)
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & 0.00 & FT & \(\$ 550.00000\) \\
0476 C-MC-DRNG & & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
\begin{tabular}{l}
8:12:26AM \\
Wednesday, December 01, 2010
\end{tabular} & & & Page 5 of 12
\end{tabular}

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
\begin{tabular}{llll}
0477 C-MC-DRNG & 0.00 & EACH & \(\$ 1,500.00000\)
\end{tabular}\(\$ \$ 0.00\)

Concrete - Headwalls/wingwalls
Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
\begin{tabular}{llll}
0486 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH
\$1,500.00000
\(\$ 0.00\)
MAJOR COST DRIVERS, DRAINAGE
Concrete Masonry
Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00
Group 0025: Closed Storm System
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0077 & C-MC-DRNG & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{MAJOR COST DRIVERS, DRAINAGE} \\
\hline 0489 & 603E13400 & 8,090.00 & FT & \$75.00000 & \$606,750.00 \\
\hline \multicolumn{6}{|l|}{30" CONDUIT, TYPE B (Average size)} \\
\hline 0523 & 604E00800 & 71.00 & EACH & \$1,500.00000 & \$106,500.00 \\
\hline \multicolumn{6}{|l|}{CATCH BASIN, NO. 3A} \\
\hline 0524 & 604E31500 & 9.00 & EACH & \$3,000.00000 & \$27,000.00 \\
\hline \multicolumn{6}{|l|}{MANHOLE, NO. 3} \\
\hline 0525 & 604E36601 & 0.00 & EACH & \$1,250.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{PRECAST REINFORCED CONCRETE OUTLET, AS PER PLAN} \\
\hline 0526 & Special & 0.00 & LS & \$6,400,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Pump Station (Storm)} \\
\hline 0527 & Special & 0.00 & EACH & \$5,750.00000 & \$0.00 \\
\hline \multicolumn{6}{|l|}{Stormceptors} \\
\hline 0529 & Special & 0.00 & LS & \$109,000.00000 & \$0.00 \\
\hline Ret & ntion basin imp & & & & \\
\hline
\end{tabular}

Total for Group 0025: \$740,250.00
Group 0026: Other Drainage Costs

0078 C-OC-DRNG
OTHER COSTS, DRAINAGE
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{crrr}
\hline 0095 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0494 D-MC-PVMT & \(73,584.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & \(\$ 5,003,712.00\) \\
Includes 6" Agg Base and Subgrade Compaction & & \\
\begin{tabular}{l}
8:12:26AM \\
Wednesday, December 01, 2010
\end{tabular} & \begin{tabular}{l}
Page 6 of 12
\end{tabular}
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{lrrr}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0495 & D-MC-PVMT & \(10,683.00\) & SY \\
13" Reinforced Concrete Pavement & & \(\$ 68.00000\) & \(\$ 726,444.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$726,444.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lrrr}
0115 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0496 & \(13,728.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 933,504.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0030: \$933,504.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{llll}
0122 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0497 D-MC-PVMT & 0.00 & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 0.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0031: \$0.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lllll}
0132 D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$0.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{rrrr}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0041: \$0.00
\(\left.\begin{array}{lllll}\text { Group 0042: Water Works } \\ \begin{array}{l}0164 \text { E-MC-WATR } \\ \text { MAJOR COST DRIVERS, WATER LINE }\end{array} & 0.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

8:12:26AM
Wednesday, December 01, 2010

Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
0173 G-MC-LTNG & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, LIGHTING & 0.00 & EACH & \(\$ 469,000.00000\) & \(\$ 0.00\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 G-MC-LTNG & 0.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG \(4,272.00\) FT
\(\$ 35.00000\)
\$149,520.00
Lighting - Continuous
Total for Group 0046: \$149,520.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \$0.00

OTHER COSTS, LIGHTING
Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
0178 H-OC-SURV
1.00 LS
\$233,107.29000
\$233,107.29
OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$233,107.29
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF
0.81 MILE
\(\$ 250,000.00000\)
\$202,500.00
Signs
Total for Group 0049: \$202,500.00
Group 0050: Pavement Marking
\begin{tabular}{lllll}
0200 & 1.00 & LS & & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \(\$ 0.00\) \\
0502 & \(344 E 00100\) & 3.66 & MILE & \(\$ 3,000.00000\) \\
EDGE LINE & 5.81 & MILE & \(\$ 2,000.00000\) & \(\$ 10,980.00\) \\
\(0503 ~ 644 E 00200\) & & \(\$ 11,620.00\)
\end{tabular}

Total for Group 0050: \$22,600.00
Group 0051: Other Traffic Control Costs

8:12:26AM
\begin{tabular}{llll}
0208 & J-OC-TRAF & 1.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
0212 K-MC-SGNL \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular}} & \multirow[t]{2}{*}{1.00} & \multirow[t]{2}{*}{LS} & \$0.00000 & \$0.00 \\
\hline & & & \multicolumn{2}{|l|}{Total for Group 0052: \$0.00} \\
\hline \multicolumn{5}{|l|}{Group 0053: Other Traffic Signal Costs} \\
\hline \begin{tabular}{l}
0213 K-OC-SGNL \\
OTHER COSTS, SIGNALS
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \(\$ 0.00\) \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{lrlrr}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & & \(\$ 135.00000\) & \(\$ 3,998,835.00\) \\
\begin{tabular}{l}
0504 M-MC-WALL \\
Retaining Walls
\end{tabular} & \(29,621.00\) & SF & &
\end{tabular}

Total for Group 0055: \$3,998,835.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \(\$ 0.00\)
Group 0057: Building Demolition

Total for Group 0057: \$0.00

\section*{Group 0058: Noise Barrier}
\begin{tabular}{lrrrr}
0220 & P-MC-NSBR & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, NOISE BARRIER & & \(\$ 0.00\) \\
0505 P-MC-NSBR & \(42,806.00\) & SF & \(\$ 25.00000\) & \(\$ 1,070,150.00\) \\
Noise Barrier & & &
\end{tabular}

Total for Group 0058: \$1,070,150.00
\begin{tabular}{lllll}
Group 0059: Other Noise Barrier Costs & & \\
\begin{tabular}{l}
0221 P-OC-NSBR \\
OTHER COSTS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{c}
O368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \$5,137,770.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
0.00 LS
\(\$ 0.00000\)
\$0.00
OTHER COSTS, STRUCTURES Contingency

Total for Group 0062: \(\$ 0.00\)
Group 0063: Temporary Road and Pavement Costs
\begin{tabular}{ll}
0225 S-MC-MNTC & 1.00 LS \\
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\end{tabular}

8:12:26AM

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)

0226 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC
1.00 LS

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\(\begin{array}{lllll}0233 & \text { S-OC-MNTC } & 1.00 & \text { LS } & \$ 0.00000 \\ \text { OTHER COSTS, MAINTENANCE OF TRAFFIC } & & \$ 0.00 \\ 0512 & \text { S-OC-MNTC } & 0.81 & \text { MILE } & \$ 500,000.00000\end{array}\)
\(\begin{array}{ccccc}0512 & \text { S-OC-MNTC } & 0.81 & \text { MILE } & \$ 500,000.00000\end{array}\) OTHER COSTS, MAINTENANCE OF TRAFFIC

Group 0071: Wetland Construction
\begin{tabular}{lcc}
0234 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & & \(\$ 0.00\) \\
0360 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs

\section*{Description Supplemental Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0235 & U-MC-MISC & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, MISCELLANEOUS COSTS} \\
\hline 0236 & U-OC-MISC & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, MISCELLANEOUS COSTS} \\
\hline 0237 & 100E00300 & 0.00 & LS & \$10,000.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE} \\
\hline 0238 & \(623 E 10000\) & 1.00 & LS & \$117,719.18000 & \$117,719.18 \\
\hline \multicolumn{6}{|r|}{CONSTRUCTION LAYOUT STAKES} \\
\hline 0239 & 619E16020 & 44.00 & MNTH & \$2,500.00000 & \$110,000.00 \\
\hline \multicolumn{6}{|r|}{FIELD OFFICE, TYPE C} \\
\hline 0240 & 614E11000 & 1.00 & LS & \$470,876.72000 & \$470,876.72 \\
\hline \multicolumn{6}{|c|}{MAINTAINING TRAFFIC} \\
\hline 0242 & 624E10000 & 1.00 & LS & \$800,000.00000 & \$800,000.00 \\
\hline \multicolumn{6}{|c|}{MOBILIZATION} \\
\hline 0511 & 103E05000 & 1.00 & LS & \$117,719.18000 & \$117,719.18 \\
\hline & MIUM FOR C & CE BON & D AND F & ENT BOND & \\
\hline
\end{tabular}

Total for Group 0072: \$1,616,315.08

\section*{Group 0073: Design Contingency Costs}
\begin{tabular}{lrrr}
0243 & 1.00 & LS & \(\$ 6,-M C N T G\) \\
MAJOR COST DRIVERS, CONTINGENCY COSTS & & \(\$ 6,290,037.71\) \\
\(25 \%\) & & & \\
0244 V-OC-CNTG & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0073: \$6,290,037.71

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
0.00 LS
\(\$ 0.00000\)
Total for Group 0074: \$0.00

\title{
Estimate Alt I OH cont 7
}

Estimated Cost: \(\$ 373,074,847.21\)
Contingency: 57.60\%
Estimated Total: \$587,965,959.20

OH-7 Reconstruction from the new bridge over the Ohio to north of Linn St.
Base Date: 07/22/10
Spec Year: 10
Unit System: E
Work Type: GEN CONST: INVLVS 2 OR MOR MAJ WRK TYPE
Highway Type: 451
Urban/Rural Type: URBAN CLASS
Season: SUMMER
County: HAMILTON
Midpoint of Latitude:
Midpoint of Longitude:
District: 8
Federal/State Project Number:
Estimate Type: C1
Prepared by Parsons Brinckerhoff on 07/22/10

Group 0001: Pavement Removal
\begin{tabular}{lrlll}
0001 & A-MC-RDWY & 0.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & & \(\$ 0.00\) \\
0343 & \(202 E 23000\) & \(117,932.00\) & SY & \(\$ 8.00000\)
\end{tabular}

Group 0002: Excavation - Rock
\begin{tabular}{llll}
0003 A-MC-RDWY \\
MAJOR COST DRIVERS, ROADWAY & 0.00 CY & \(\$ 30.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0002: \$0.00
Group 0003: Excavation - Soil
\begin{tabular}{lrlrr}
0004 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
\begin{tabular}{l}
MAJOR COST DRIVERS, ROADWAY \\
0344 203E10000 \\
EXCAVATION
\end{tabular} & \(453,980.00\) & CY & \(\$ 8.00000\) & \(\$ 3,631,840.00\)
\end{tabular}

Total for Group 0003: \(\$ 3,631,840.00\)
Group 0004: Excavation - Hazardous
0006 A-MC-RDWY
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, ROADWAY
Total for Group 0004: \$0.00

Group 0005: Fill - Embankment (includes wasting excess excavation)
\begin{tabular}{lrlll}
0007 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0345 & \(203 E 20000\) & \(453,980.00\) & CY & \(\$ 6.00000\)
\end{tabular}

Total for Group 0005: \$2,723,880.00
Group 0006: Fill - Lime Modified Soil
\begin{tabular}{llll}
0010 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
\begin{tabular}{l}
0346 205E10050 \\
LIME STABILIZED EMBANKMENT
\end{tabular} & 0.00 & CY & \(\$ 7.00000\) \\
\begin{tabular}{l}
0347 205E10300 \\
LIME
\end{tabular} & 0.00 & TON & \(\$ 5.00000\)
\end{tabular}

Total for Group 0006: \$0.00
Group 0007: Fill - Borrow
0011 A-MC-RDWY \(0.00 \mathrm{CY} \quad \$ 8.00000 \quad \$ 0.00\) MAJOR COST DRIVERS, ROADWAY

Total for Group 0007: \$0.00
Group 0008: Concrete Barrier
\begin{tabular}{crrrr}
\hline 0012 & A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, ROADWAY & & & \(\$ 0.00\) \\
0465 622E10060 & \(22,439.00\) & FT & \(\$ 110.00000\) & \(\$ 2,468,290.00\) \\
8:13:09AM & & & & Page 2 of 12
\end{tabular}

\author{
CONCRETE BARRIER, SINGLE SLOPE, TYPE B
}

Total for Group 0008: \(\$ 2,468,290.00\)
Group 0009: Subgrade Treatment - Lime
\begin{tabular}{lllll}
0014 A-MC-RDWY & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, ROADWAY
\end{tabular}

Total for Group 0009: \$0.00
Group 0010: Subgrade Treatment - Cement
\begin{tabular}{l}
155,020.00 SY \\
0016 A-MC-RDWY
\end{tabular}\(\quad \$ 2.50000 \quad \$ 387,550.00\)

Total for Group 0010: \(\$ 387,550.00\)
Group 0011: Subgrade Treatment - Undercut \& Backfill
\begin{tabular}{llll}
0017 A-MC-RDWY & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0011: \$0.00

\section*{Group 0012: Other Roadway Costs}

8:13:09AM
Wednesday, December 01, 2010

Line \# Item Number

PROOF ROLLING
0035 204E10000
SUBGRADE COMPACTION
0036 451E30000 SPECIAL - PRESSURE RELIEF JOINT, TYPE A
0037 606E13000
\(14,675.00\) GUARDRAIL, TYPE 5
0038 606E22000 ANCHOR ASSEMBLY, TYPE B-98
0039 606E22010 ANCHOR ASSEMBLY, TYPE E-98
0040 606E26500 ANCHOR ASSEMBLY, TYPE T
0041 606E35000 BRIDGE TERMINAL ASSEMBLY, TYPE 1
0042 606E35100 BRIDGE TERMINAL ASSEMBLY, TYPE 2
0043 606E60010 0.00 EAC IMPACT ATTENUATOR, TYPE 1-98 (BIDIRECTIONAL)
0044 607E15000 FENCE, TYPE 47 For Fencing
0423 304E20000 AGGREGATE BASE For Fencing ROCK CHANNEL PROTECTION, TYPE B WITH FILTER For Fencing
0425 607E40500
0.00 EACH
\$731.31641
\(\$ 0.00\)
GATE, TYPE 47 For Fencing
0426 625E32000 GROUND ROD For Fencing
0466

\section*{Description \\ Description
Supplemental Description}

\section*{Group 0014: Seeding \& Mulching / Sodding}
\begin{tabular}{lrlrr}
0045 & B-MC-ERCO & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, EROSION CONTROL & & & \(\$ 0.00\) \\
0467 & \(659 E 10000\) \\
SEEDING AND MULCHING & \(26,772.00\) & SY & \(\$ 1.00000\) & \(\$ 26,772.00\) \\
0531 & \(660 E 25000\) & 0.00 & SY & \(\$ 15.00000\)
\end{tabular}

Total for Group 0014: \(\$ 26,772.00\)

\section*{Group 0015: Rock Channel Protection}
\begin{tabular}{lrrr}
0047 & B-MC-ERCO & 1.00 & LS \\
MAJOR COST DRIVERS, EROSION CONTROL & & \(\$ 0.00000\) & \(\$ 0.00\) \\
0469 & \(001 E 32000\) & 0.00 & CY
\end{tabular} ROCK CHANNEL PROTECTION, TYPE A WITH FILTER

Total for Group 0015: \$0.00
Group 0016: Erosion Control - Item 832
0048 B-MC-ERCO
1.00 LS
\(\$ 0.00000\)

\section*{Description Supplemental Description}

MAJOR COST DRIVERS, EROSION CONTROL
\begin{tabular}{rrrrr}
\(0470 \quad 832 E 10000\) & 1.00 & LS & \(\$ 50,000.00000\) & \(\$ 50,000.00\) \\
STORM WATER POLLUTION PREVENTION PLAN & & \(\$ 1.00000\) & \(\$ 170,000.00\)
\end{tabular}

Total for Group 0016: \$220,000.00
\(\left.\begin{array}{llll}\begin{array}{c}\text { Group 0017: Other Erosion Control Costs } \\ \text { 0049 670E00700 } \\ \text { DITCH EROSION PROTECTION }\end{array} & 0.00 & \text { SY } & \\ \begin{array}{c}\text { 0050 B-OC-ERCO } \\ \text { OTHER COSTS, EROSION CONTROL }\end{array} & 1.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0017: \$0.00
\begin{tabular}{lrrrr}
Group 0018: Underdrains \\
0059 C-MC-DRNG & & & \\
MAAOR COST DRIVERS, DRAINAGE & 1.00 & LS & \(\$ 0.00000\) \\
\begin{tabular}{c}
0062 605E05100 \\
4" SHALLOW PIPE UNDERDRAINS
\end{tabular} & \(93,645.00\) & FT & \(\$ 8.00000\) & \(\$ 0.00\) \\
\end{tabular}

Total for Group 0018: \$749,160.00
Group 0019: Culverts - Type A: < 5'
0474 C-MC-DRNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\) \(\begin{array}{llll}\text { MAJOR COST DRIVERS, DRAINAGE } & & \\ 480 \text { C-MC-DRNG } & \$ 350.00000 & \$ 0.00\end{array}\) MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe up to 60"
0481 C-MC-DRNG
0.00 EACH
\$1,500.00000
\(\$ 0.00\) MAJOR COST DRIVERS, DRAINAGE Concrete Masonry

Total for Group 0019: \(\$ 0.00\)
Group 0021: Culverts, Type A: 5' - 10'
\begin{tabular}{llll}
0067 C-MC-DRNG & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, DRAINAGE & 0.00 & FT & \(\$ 550.00000\) \\
0476 C-MC-DRNG & & \(\$ 0.00\) \\
MAJOR COST DRIVERS, DRAINAGE & & & \\
\begin{tabular}{l}
8:13:09AM \\
Wednesday, December 01, 2010
\end{tabular} & & & Page 5 of 12
\end{tabular}

\section*{Description Supplemental Description}

Pipe Structures - Reinforced Concrete 5'-10' 66" to 78"
\begin{tabular}{llll}
0477 C-MC-DRNG & 0.00 & EACH & \(\$ 1,500.00000\)
\end{tabular}\(\$ \$ 0.00\)

Concrete - Headwalls/wingwalls
Total for Group 0021: \$0.00
Group 0022: Culverts, Type A: 10' - 20'
0486 C-MC-DRNG
MAJOR COST DRIVERS, DRAINAGE \(1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
0487 C-MC-DRNG \(\quad 0.00\) FT \(\$ 1,400.00000 \quad \$ 0.00\)

MAJOR COST DRIVERS, DRAINAGE Pipe Structures - Reinforced Concrete Pipe 10'-20' 0488 C-MC-DRNG 0.00 EACH
\$1,500.00000
\(\$ 0.00\)
MAJOR COST DRIVERS, DRAINAGE
Concrete Masonry
Total for Group 0022: \$0.00
Group 0024: BMP's
\begin{tabular}{llll}
0076 C-MC-DRNG \\
MAJOR COST DRIVERS, DRAINAGE & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

MAJOR COST DRIVERS, DRAINAGE
Total for Group 0024: \$0.00

\section*{Group 0025: Closed Storm System}

Total for Group 0025: \$1,747,725.00

\section*{Group 0026: Other Drainage Costs}
```

0 0 7 8 ~ C - O C - D R N G ~
OTHER COSTS, DRAINAGE

```
1.00 LS
\(\$ 0.00000\)
Total for Group 0026: \$0.00

Group 0027: Mainline - Travel Lanes
\begin{tabular}{crrr}
\hline 0095 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & \(\$ 0.00000\) \\
\hline 0494 D-MC-PVMT & \(78,463.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & \(\$ 5,335,484.00\) \\
Includes 6" Agg Base and Subgrade Compaction & & \\
\begin{tabular}{l}
8:13:09AM \\
Wednesday, December 01, 2010
\end{tabular} & \begin{tabular}{l}
Page 6 of 12
\end{tabular}
\end{tabular}

Group 0028: Mainline - Outside Shoulder
\begin{tabular}{lrrr}
0100 & D-MC-PVMT & 1.00 & LS \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00000\) \\
0495 D-MC-PVMT & \(17,545.00\) & SY & \(\$ 68.00000\) \\
13" Reinforced Concrete Pavement & & & \(\$ 1,193,060.00\) \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0028: \$1,193,060.00
Group 0030: Mainline - Inside Shoulder
\begin{tabular}{lrrrr}
0115 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0496 & \(19,110.00\) & SY & \(\$ 68.00000\) & \(\$ 1,299,480.00\) \\
13" Reinforced Concrete Pavement & & & \\
Includes 6" Agg base and Subgrade Compaction & &
\end{tabular}

Total for Group 0030: \$1,299,480.00
Group 0031: Ramps (including shoulders)
\begin{tabular}{lrlrl}
0122 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & \(\$ 0.00\) \\
0497 & D-MC-PVMT & \(25,969.00\) & SY & \(\$ 68.00000\)
\end{tabular}

13" Reinforced Concrete Pavement Includes 6" Agg base and Subgrade Compaction

Total for Group 0031: \$1,765,892.00
Group 0032: Non - Mainline Lanes
\begin{tabular}{lrlrl}
0132 & D-MC-PVMT & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, PAVEMENT & & & & \(\$ 0.00\) \\
0498 & D-MC-PVMT & \(13,933.00\) & SY & \(\$ 41.00000\)
\end{tabular}

Asphalt
Includes 3" 448, 9" 301, 6" Agg base and Subgrade Compaction
Total for Group 0032: \$571,253.00

\section*{Group 0041: Other Pavement Costs}
\begin{tabular}{rrrr}
0163 D-OC-PVMT & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
OTHER COSTS, PAVEMENT & & &
\end{tabular}

Total for Group 0041: \$0.00
\(\left.\begin{array}{lllll}\text { Group 0042: Water Works } \\ \begin{array}{c}0164 \text { E-MC-WATR } \\ \text { MAJOR COST DRIVERS, WATER LINE }\end{array} & 0.00 & \text { LS } & \$ 0.00000\end{array}\right] \$ \$ 0.00\)

Total for Group 0042: \$0.00
Group 0043: Sanitary Line
0170 F-MC-SANI 0.00 LS \$0.00000 \$0.00
MAJOR COST DRIVERS, SANITARY SEWER

8:13:09AM
Wednesday, December 01, 2010

Total for Group 0043: \$0.00
Group 0044: Lighting - Full Interchange
\begin{tabular}{lllll}
\begin{tabular}{l}
0173 \\
MAJOR COST DRIVERS, LIGHTING
\end{tabular} & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
0499 & \(3-M C-L T N G ~\) & 3.00 & EACH & \(\$ 469,000.00000\)
\end{tabular}

Group 0045: Lighting - Partial Interchange
\begin{tabular}{llll}
0288 & G-MC-LTNG & 0.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

Total for Group 0045: \$0.00
Group 0046: Lighting - Continuous Roadway
0176 G-MC-LTNG 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, LIGHTING
0500 G-MC-LTNG \(21,768.00\) FT
\(\$ 35.00000\)
\$761,880.00
Lighting - Continuous
Total for Group 0046: \$761,880.00
Group 0047: Other Lighting Costs
0177 G-OC-LTNG 0.00 LS \(\$ 0.00000 \quad \$ 0.00\)

Total for Group 0047: \$0.00
Group 0048: Traffic Surveillance
0178 H-OC-SURV 1.00 LS
\$2,848,600.19000
\$2,848,600.19
OTHER COSTS, TRAFFIC SURVEILLANCE
Total for Group 0048: \$2,848,600.19
Group 0049: Signs
0179 J-MC-TRAF \(\quad 1.00 \mathrm{LS} \quad \$ 0.00000 \quad \$ 0.00\)
MAJOR COST DRIVERS, TRAFFIC CONTROL
0501 J-MC-TRAF
4.13 MILE
\$250,000.00000
\$1,032,500.00
Signs
Total for Group 0049: \$1,032,500.00
Group 0050: Pavement Marking
\begin{tabular}{lrlrc}
0200 & 1.00 & JS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, TRAFFIC CONTROL & & \\
0502 & 17.83 & MILE & \(\$ 3,000.00000\) & \(\$ 53,490.00\) \\
EDGE LINE & & & & \(\$ 17,840.00\)
\end{tabular}

Total for Group 0050: \$71,330.00
Group 0051: Other Traffic Control Costs

Description
Supplemental Description
\begin{tabular}{llll}
0208 & J-OC-TRAF & 1.00 & LS
\end{tabular}\(\$ \$ 0.00000 \quad \$ 0.00\)

OTHER COSTS, TRAFFIC CONTROL
Total for Group 0051: \$0.00
Group 0052: Signals - Intersections
\begin{tabular}{lccc}
\begin{tabular}{l}
0212 \\
MAJOR COST DRIVERS, SIGNALS
\end{tabular} & 3.50 EACH & \(\$ 175,000.00000\) & \(\$ 612,500.00\) \\
& & Total for Group 0052: \(\$ 612,500.00\) \\
Group 0053: Other Traffic Signal Costs \\
\begin{tabular}{l}
O213 K-OC-SGNL \\
OTHER COSTS, SIGNALS
\end{tabular} & 1.00 LS & \(\$ 0.00000\) & \(\$ 0.00\)
\end{tabular}

Total for Group 0053: \$0.00
Group 0054: Landscaping
\begin{tabular}{llll}
0214 L-MC-LSCP & 1.00 & LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, LANDSCAPING & & & \\
0215 L-OC-LSCP & 1.00 & LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0054: \$0.00
Group 0055: Retaining Walls \$125 + \$10/ft for caps, barriers and testing
\begin{tabular}{lrlrr}
0216 M-MC-WALL & 1.00 & LS & \(\$ 0.00000\) & \(\$ 0.00\) \\
MAJOR COST DRIVERS, RETAINING WALLS & & & \(\$ 135.00000\) & \(\$ 19,593,495.00\) \\
\begin{tabular}{c}
0504 M-MC-WALL \\
Retaining Walls
\end{tabular} & \(145,137.00\) & SF & &
\end{tabular}

Total for Group 0055: \$19,593,495.00

\section*{Group 0056: Other Retaining Wall Costs}
0217 M-OC-WALL
1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

OTHER COSTS, RETAINING WALLS
Total for Group 0056: \(\$ 0.00\)
Group 0057: Building Demolition

\section*{Description Supplemental Description \\ BUILDING DEMOLISHED, AS PER PLAN \\ Small Residential}

Total for Group 0057: \$75,000.00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Group 0058: Noise Barrier} \\
\hline \begin{tabular}{l}
0220 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{5}{|l|}{Noise Barrier} \\
\hline & & & Total & \\
\hline \multicolumn{5}{|l|}{Group 0059: Other Noise Barrier Costs} \\
\hline \begin{tabular}{l}
0221 P-OC-NSBR \\
OTHER COSTS, NOISE BARRIER
\end{tabular} & 1.00 & LS & \$0.00000 & \$0.00 \\
\hline \begin{tabular}{l}
0368 P-MC-NSBR \\
MAJOR COST DRIVERS, NOISE BARRIER
\end{tabular} & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline
\end{tabular}

Total for Group 0059: \$0.00

Total for Group 0060: \$235,972,022.00
Group 0061: Rehabilitated Structures
0223 R-MC-STRC 0.00 SF
\(\$ 45.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, STRUCTURES
Total for Group 0061: \$0.00
Group 0062: Other Structure Costs
0224 R-OC-STRC
OTHER COSTS, STRUCTURES
Contingency
Group 0063: Temporary Road and Pavement Costs
0225 S-MC-MNTC 1.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC

Total for Group 0063: \$0.00
Group 0064: Portable Concrete Barrier (PCB)
0226 S-MC-MNTC \(\quad 1.00\) LS \$0.00

MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0064: \$0.00
Group 0065: Impact Attenuators
0227 S-MC-MNTC 1.00 LS
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0065: \$0.00
Group 0066: Sheeting
0229 S-MC-MNTC \(\quad 1.00\) LS \$0.00000 \$0.00
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0066: \$0.00
Group 0067: Temporary Signals
0230 S-MC-MNTC
0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)

Total for Group 0067: \$0.00
Group 0068: Work Zone Lighting
0231 S-MC-MNTC 0.00 LS
\(\$ 0.00000\)
\(\$ 0.00\)
Total for Group 0068: \$0.00
Group 0069: Innovative Contracting Incentatives
0232 S-MC-MNTC 0.00 LS \(\$ 0.00000\)
MAJOR COST DRIVERS, MAINTENANCE OF TRAFFIC
Total for Group 0069: \$0.00
Group 0070: Other MOT Costs
\begin{tabular}{llll}
0233 & S-OC-MNTC & 1.00 & LS
\end{tabular}

Total for Group 0070: \$2,065,000.00
Group 0071: Wetland Construction
\begin{tabular}{lcc}
0234 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\) \\
MAJOR COST DRIVERS, WETLAND CONSTRUCTION & & \(\$ 0.00\) \\
0360 T-MC-WTLD & 0.00 LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0071: \$0.00
Group 0072: Misc. Costs
8:13:09AM
Wednesday, December 01, 2010

\section*{Description Supplemental Description}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0235 & U-MC-MISC & 0.00 & & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{MAJOR COST DRIVERS, MISCELLANEOUS COSTS} \\
\hline 0236 & U-OC-MISC & 0.00 & LS & \$0.00000 & \$0.00 \\
\hline \multicolumn{6}{|c|}{OTHER COSTS, MISCELLANEOUS COSTS} \\
\hline 0237 & 100E00300 & 1.00 & LS & \$10,000.00000 & \$10,000.00 \\
\hline \multicolumn{6}{|c|}{SPECIAL - PREMIUM ON RAILROADS' PROTECTIVE PUBLIC LIABILITY AND PROPERTY DAMAGE LIABILITY INSURANCE} \\
\hline 0238 & 623E10000 & 1.00 & LS & \$1,438,543.10000 & \$1,438,543.10 \\
\hline \multicolumn{6}{|c|}{CONSTRUCTION LAYOUT STAKES} \\
\hline 0239 & 614E11000 & 1.00 & LS & \$5,754,172.38000 & \$5,754,172.38 \\
\hline \multicolumn{6}{|c|}{MAINTAINING TRAFFIC} \\
\hline 0240 & 619E16020 & 44.00 & MNTH & \$2,500.00000 & \$110,000.00 \\
\hline \multicolumn{6}{|c|}{FIELD OFFICE, TYPE C} \\
\hline 0242 & 624E10000 & 1.00 & LS & \$2,000,000.00000 & \$2,000,000.00 \\
\hline \multicolumn{6}{|c|}{MOBILIZATION} \\
\hline 0511 & 103E05000 & 1.00 & LS & \$1,438,543.10000 & \$1,438,543.10 \\
\hline \multicolumn{6}{|c|}{PREMIUM FOR CONTRACT PERFORMANCE BOND AND FOR PAYMENT BOND} \\
\hline
\end{tabular}

Total for Group 0072: \$10,751,258.58

\section*{Group 0073: Design Contingency Costs}
0243 V-MC-CNTG 1.00
\begin{tabular}{llll}
0244 & V-OC-CNTG & 1.00 LS & \(\$ 0.00000\)
\end{tabular}

Total for Group 0073: \$74,614,969.44

\section*{Group 0074: Inflation Contingency}

0266 V-OC-CNTG
OTHER COSTS, CONTINGENCY COSTS
\(\$ 0.00\)
Total for Group 0074: \$0.00
\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Macro View & & & & & & & & & & & & & ibutes & & \\
\hline Acquisition & Unit (SF) or (Acreage) & X & Cost/Unit (\$\$/SF) (\$\$/Acre) & Subtotal Land Value & + & \[
\begin{array}{c|}
\hline \text { Structure } \\
\text { Values } \\
\text { (if Taken) }
\end{array}
\] & + & \begin{tabular}{|c|c}
Damages \\
(Loss in Value \\
to the Residue)
\end{tabular} & \begin{tabular}{|c|}
\hline Subtotal \\
Structures \& \\
Damages
\end{tabular} & \(=\) & Total Non Labor Acquisition Costs & Parcel Count & Total Takes & \begin{tabular}{l}
Partial \\
Takes
\end{tabular} & No. of Structures Impacted \\
\hline -Residential & 0 & x & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & \(=\) & \$0.00 & 0 & 0 & 0 & 0 \\
\hline -Commercial & 1.89 & x & \$523,138.30 & \$988,731 & + & 6684870 & + & N/A & \$6,684,870.00 & = & \$7,673,601.39 & 10 & 3 & 7 & 3 \\
\hline -Industrial & 5.85 & x & \$159,395.56 & \$932,464 & + & 3740 & + & N/A & \$3,740.00 & = & \$936,204.03 & 19 & 8 & 11 & 1 \\
\hline -Agricultural & 0 & x & \$0.00 & \$0 & + & 0 & + & N/A & \$0.00 & = & \$0.00 & 0 & 0 & 0 & 0 \\
\hline Relocation & Unit (Displacement) & X & *RHP/ & RSP & + & Move Cost & + & Reestablis & shment & \(=\) & Total Non Labor RAP Costs & Estim & \begin{tabular}{l}
amount of tim \\
all RAP parc
\end{tabular} & \[
\begin{aligned}
& \text { necessary } \\
& =\text { (months) }
\end{aligned}
\] & relocate
\[
24
\] \\
\hline -Residential Owner Occupant Tenant & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & x \(\begin{aligned} & \text { x } \\ & \times\end{aligned}\) & \(\$ 34\)
\(\$ 10\) & & \[
\begin{aligned}
& + \\
& + \\
& +
\end{aligned}
\] & \[
\begin{aligned}
& \$ 6,000 \\
& \$ 1,750
\end{aligned}
\] & & & & \(=\) & \[
\begin{aligned}
& \$ 0 \\
& \$ 0
\end{aligned}
\] & Estima aç & \begin{tabular}{l}
number of yea \\
isition begins =
\end{tabular} & until proje & \begin{tabular}{l}
wide R/W \\
2
\end{tabular} \\
\hline -Commerical/Farm/NPO
Owner
Tenant & \[
\begin{gathered}
3 \\
22
\end{gathered}
\] & & & & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{aligned}
& \$ 15,000 \\
& \$ 15,000 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l}
+ \\
+ \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& = \\
& =
\end{aligned}
\] & \[
\begin{aligned}
& \$ 75,000 \\
& \$ 550,000 \\
& \hline
\end{aligned}
\] & & & & \\
\hline -Personal Property & 0 & & & & x & \$1,000 & & & & \(=\) & \$0 & & & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\(\{[(\) Total Cost of Acquisition Cost \() \times 0.90] \times 0.025\}+\{[\) (Total of Acquisition Cost \() \times 0.15] \times 1.20\}+\{[(\) Total of Acquisition Cost) \(\times 0.10] \times 1.50\}=\) Contingency}} & \multicolumn{4}{|c|}{Contingency
(Incidentals, Admin. Review \& Appropriation)} & 3034956.408 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
*RHP - Replacement Housing Payment \\
*RSP - Rent Supplemental Payment \\
*NPO - Non-Profit Organization
\end{tabular}}} \\
\hline & & & & & & & \multicolumn{4}{|c|}{Total Non Labor R/W Costs} & \$12,269,761.82 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Labor (External) & Unit (Parcels) & X & Unit Price & = & Total Cost \\
\hline Titles & 29 & X & \$400 & = & \$11,600 \\
\hline \begin{tabular}{l}
Appraisal \\
-Simple \\
-Detailed
\end{tabular} & \[
\begin{gathered}
4 \\
25
\end{gathered}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 750 \\
\$ 4,500
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 3,000 \\
\$ 112,500
\end{gathered}
\] \\
\hline Appraisal Review -Simple -Detailed & \[
\begin{gathered}
4 \\
25
\end{gathered}
\] & \begin{tabular}{l}
x \\
x \\
\hline
\end{tabular} & \[
\begin{gathered}
\$ 500 \\
\$ 2,000
\end{gathered}
\] & \(=\) & \[
\begin{gathered}
\$ 2,000 \\
\$ 50,000
\end{gathered}
\] \\
\hline Negotiations & 29 & x & \$1,100 & = & \$31,900 \\
\hline \begin{tabular}{l}
Relocations \\
-Personal Property \\
-Residential \\
-Commercial/Farm/*NPO
\end{tabular} & \[
\begin{gathered}
0 \\
0 \\
25
\end{gathered}
\] & \[
\begin{aligned}
& x \\
& x \\
& x
\end{aligned}
\] & \[
\begin{aligned}
& \$ 1,500 \\
& \$ 5,200 \\
& \$ 5,600
\end{aligned}
\] & \(=\)
\(=\)
\(=\) & \[
\begin{gathered}
\$ 0 \\
\$ 0 \\
\$ 140,000
\end{gathered}
\] \\
\hline Closings & 29 & x & \$400 & = & \$11,600 \\
\hline Project Management & 29 & x & \$550 & \(=\) & \$15,950 \\
\hline \multirow[t]{2}{*}{Asbestos Testing \& Abatement} & & x & & \(=\) & \\
\hline & \multicolumn{4}{|c|}{Total Labor Costs} & \$378,550 \\
\hline *NPO = Non-Profit Organization & & & & & \\
\hline
\end{tabular}

Instruction for Acquisition \& Relocation Cost Estimates

Estimate the total number of acres involved in the project and allocate those acres into the four categories shown.

Assign an average unit price for each category. These unit prices are typically taken from the auditors ax card data. Cost Estimates prepared at Step 4 Step 7 on Major Projects) and thereafter must base unit prices on a project sales data book instead of tax card data.

Add structure values from the auditors tax cards only if the structures are taken.
Damages must be assessed by a pre-qualified expert with experience in Before \& After analysis. This Major Projects) and requires some knowledge of the mpats of troject on structures.

Relocation Cost Estimates must consider the complexity of the move process. All move estimates that involve a business or a mulit-tenant residential structure should use the services of a relocation Assistance professionnal to accurately gauge costs.

Instructions for Labor Cost Estimates Labor costs are a function of time, distance, and Labor costs are a function of time, distance, and
talent. Labor costs estimates should reflect the complexity of the project and the talent necessary to acquire the right of way in a timely manner. The person making the cost estimate may adjust the igures given for the particular project being estimated to reflect local labor costs. It is critical that the estimate be labeled to reflect the alignment
alternative, the step in the PDP process and the
person(s) performing the estimate.
Comments

\section*{Appendix J}

Design Exceptions

Brent Spence Bridge
Design Exceptions - Alternate E

Brent Spence Bridge
Design Exceptions - Alternate E
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline I-71/-75/US 50
INTERCHANGE & Curve PI & & & \[
\begin{array}{|l|}
\hline \text { Design } \\
\text { Speed Met } \\
\text { (Required) } \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\text { Horizontal } \\
\text { Dc } \\
\text { (Maximum) } \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\begin{array}{c}
\text { Horizontal } \\
\text { sisd } \\
\text { (Minimum) }
\end{array} \\
\hline
\end{array}
\] & \begin{tabular}{c}
Vertical \\
\begin{tabular}{c}
Curvature-K \\
(Minimum)
\end{tabular} \\
\hline
\end{tabular} & Other & \[
\begin{gathered}
\begin{array}{c}
\text { Design } \\
\text { Speed } \\
\text { Existing }
\end{array} \\
\hline
\end{gathered}
\] & Reason(s) For Design Exception & Potential Impact(s) to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline \multirow[t]{2}{*}{EBSBNB (NB CD to - 775 NB)} & \(48+86.24\) (Horiz) & Y & 16 & \(45 \mathrm{mph}(50)\) & \[
\begin{aligned}
& \hline 7^{\circ} 42^{\prime} 14.3^{\prime \prime} \\
& \left(6^{\circ} 45^{\prime} 00 "\right)
\end{aligned}
\] & & & & N/A & - Curve needed to parallel 7th to SB CD Road to avoid shifting other ramp alignments to the East into a commercial building along 7th. & Commercial buildings along 7th will be impacted. & Add Signage/Traffic Control Devices. Might be able to improve horizontal geometry if \\
\hline & \(48+86.24\) (Horiz) & Y & 17 & \(41 \mathrm{mph}(50)\) & & 315' (425) & & & N/A & - Barrier and retaining wall. & By flatening the curve commercial buildings along 7 th will be impacted & Add Signage/ Lighting \\
\hline \multirow{11}{*}{EBSBSB (8th St to SB CD RD)} & \(21+58.2\) (Horiz) & Y & 18 & \(40 \mathrm{mph}(50)\) & \[
\begin{gathered}
10^{\circ} 22^{\prime} 15.77^{\prime \prime} \\
\left(6^{\circ} 45^{\prime} 000^{\prime \prime}\right.
\end{gathered}
\] & & & & N/A & & \multirow[b]{2}{*}{Flattening the curve at this location will increase the vertical grade of the off ramp from 1-75 SB to 7th Street.} & \multirow[t]{2}{*}{Use a flatter curve or reduce design speed Street to CD SB and only allow freeflow left turn onto 7th Street eastbound} \\
\hline & \(21+58.2\) (Horiz) & Y & 19 & 39 mph (50) & & 300' (425) & & & N/A & - Barrier for bridge pier. & & \\
\hline & \(32+03.55\) (Horiz) & Y & 20 & \(30 \mathrm{mph}(50)\) & \[
\left(\begin{array}{c}
20^{\circ} 22^{\prime} 36.33^{\prime \prime} \\
\left(6^{\circ} 45^{\prime} 000^{\prime \prime}\right.
\end{array}\right.
\] & & & & N/A & - Intersection alignment of NB and SB movements to reduce skew. & \multirow[t]{6}{*}{- Any re-alignment to the east will impact the storage capacity of Fourth Street WB and Fifth Street EB.} & \multirow[t]{2}{*}{\begin{tabular}{l}
\begin{tabular}{l}
Use a flatter curve, change tangent through \\
intersection, and/or reduce design speed \\
(classification). \\
\hline Add Signage/ Lighting. Reduce design speed
\end{tabular} \\
\hline
\end{tabular}} \\
\hline & \(32+03.55\) (Horiz) & Y & 21 & \(27 \mathrm{mph}(50)\) & & 175' (425) & & & N/A & \begin{tabular}{l}
- Bridge parapet. \\
- Wider shoulder would increase structure width.
\end{tabular} & & \\
\hline & \(32+03.55\) (Horiz) & \(Y\) & 22 & \(30 \mathrm{mph}(50)\) & & & & 60' (212) & N/A & - Ahead sprial through intersection. & & Add Signage/Trafic Control Devices \\
\hline & 35+29.53 (Horiz) & Y & 23 & \(30 \mathrm{mph}(50)\) & \[
\begin{array}{|cc|}
\hline 17^{\circ} 17^{\prime} 08.8^{\prime \prime} \\
\left(6^{\circ} 45^{\prime} 00^{\prime \prime}\right)
\end{array}
\] & & & & N/A & - Intersection alignment of NB and SB movements to reduce skew. & & Use a flatter curve, change tangent through intersection, increase rear spiral length, and/or reduce design speed (classification). \\
\hline & \(35+29.53\) (Horiz) & Y & 24 & \(27 \mathrm{mph}(50)\) & & 175' (425) & & & N/A & \begin{tabular}{l}
- Bridge parapet. \\
- Wider shoulder would increase structure width.
\end{tabular} & & Add Signage/ Lighting \\
\hline & \(35+29.53\) (Horiz) & Y & 25 & \(30 \mathrm{mph}(50)\) & & & & 60' (208) & N/A & - Back sprial through intersection. & & Use a flatter curve, change tangent through intersection, increase ahead spiral length, and/or reduce design speed (classification). \\
\hline & 40+62.31 (Horiz) & Y & 26 & \(28 \mathrm{mph}(50)\) & & 180' (425) & & & N/A & \begin{tabular}{l}
- Bridge parapet. \\
- Wider shoulder would increase structure width.
\end{tabular} & & Add Signage/ Lighting \\
\hline & \(45+70.78\) (Horiz) & Y & 27 & \(42 \mathrm{mph}(50)\) & & \(325{ }^{\prime}(570)\) & & & N/A & \begin{tabular}{l}
- Bridge parapet. \\
- Wider shoulder would increase structure width.
\end{tabular} & & Add Signage/ Lighting \\
\hline & \(43+25.09\) (Vertical) & Y & 28 & \(45 \mathrm{mph}(50)\) & & & 61 (84) & & N/A & - Curve needed for clearance over NB CD Road and under 1-71 SB. & & Add Signage/Traffic Control Devices. Look at changing grades to allow for more room to increase vertical curve lengths. \\
\hline \multirow{3}{*}{ECDSB7 (SB CD Road to 7th)} & \({ }^{37+80.71 ~(H o r i z)}\) & Y & 29 & \(45 \mathrm{mph}(50)\) & \[
\begin{array}{|l|}
\hline 7^{\circ} 22^{\prime} 33.6^{\prime \prime \prime} \\
\left(6^{\circ} 45^{\prime} 00^{\prime \prime}\right) \\
\hline
\end{array}
\] & & & & 45 mph & - Curve needed to get clearance under 7th to SB CD Road and over ramp from to l-75 SB to I-71 NB. & & Add Signage/Trafic Control Devices \\
\hline & \({ }^{37+80.71 ~(H o r i z) ~}\) & Y & 30 & \(37 \mathrm{mph}(50)\) & & 270' (425) & & & 36 mph & \begin{tabular}{l}
- Bridge parapet. \\
- Wider shoulder would increase structure width.
\end{tabular} & & Add Signage/ Lighting \\
\hline & 37+80.71 (Horiz) & Y & 31 & \(45 \mathrm{mph}(50)\) & & & & 200' (393) & N/A & - Spiral in an intersection that intersects another transition. & & Change geometry. \\
\hline ESBFWWEB
(I-75 SB to \(1-71 \mathrm{NB})\) & 33+07.04 (Horiz) & Y & 32 & \(28 \mathrm{mph}(45)\) & & 185' (360) & & & 33 mph & \begin{tabular}{l}
- Bridge parapet. \\
- Wider shoulder would increase structure width.
\end{tabular} & - With the flattening of the curve to I-75 mainline, I-75 SB to I-71 NB will be relocated to the west, impacting the tv station/parking garage. In addition the distance needed to make the vertical clearance requirements under I-75 mainline is much less than before. In addition, changes to US 50 to I-71 NB will require that I-75 mainline have a steeper grade south of US 50 to allow l-75 SB to l-71 NB enough room to tie into the gore of US 50 to I-71 NB. & Add Signage/ Lighting \\
\hline \[
\begin{aligned}
& \text { EBSBSB2 } \\
& \text { (SB CD RD to 2nd) } \\
& \hline
\end{aligned}
\] & 5+57.82 (Horiz) & Y & 33 & 28 mph (30) & & 180' (200) & & & 32 mph & \begin{tabular}{l}
- Bridge parapet. \\
- Wider shoulder would increase structure width.
\end{tabular} & & Add Signage/ Lighting, wider shoulder at this location will not impact any other structures \\
\hline \begin{tabular}{l}
EUS50FWWEB \\
(US 50 to l-71 NB/US 50 EB)
\end{tabular} & 15+55.27 (Horiz) & Y & 34 & \(38 \mathrm{mph}(45)\) & & \(280^{\prime}(360)\) & & & 30 mph & \begin{tabular}{l}
- Bridge parapet. \\
- Wider shoulder would increase structure width, shift US 50 WB alignment (since it is parallel) which then would impact the Dunhumby building.
\end{tabular} & - With I-75 Mainline using a flatter curve at Sta. 46+00, there is more room for the connections to/from I-75 and I-71 from/to US 50. However, with the design speed changes made to I-71 NB and I-71 SB will create vertical clearance issues which may lead to higher structures and steeper grades. Also the horizontal sight distance leading into the Fort Washington Way Trench will need to be studied to determine at which point the shoulders can be tapered down to meet the tie-in points for all connections into and out of the Trench. & Add Signage/ Lighting \\
\hline \multirow[b]{2}{*}{EFWWWB75
(I-71 SB to I-75 NB)} & \(13+69.55\) (Horiz) & Y & 35 & \(39 \mathrm{mph}(45)\) & & 300' (360) & & & 35 mph & \multirow[t]{2}{*}{\begin{tabular}{l}
- Bridge parapet. \\
- Wider shoulder would increase structure width. Also, shifting the US
\end{tabular}} & \multirow[b]{2}{*}{See US50FWWEB potential impacts} & Add Signage/Trafic Control Devices \\
\hline & 27+36.92 (Horiz) & Y & 36 & \(39 \mathrm{mph}(45)\) & & 290 ' (360) & & & N/A & & & Use a flatter curve or reduce design speed (classification). \\
\hline E75SBFREE
(l-75 SB to Freeman Ave) & \({ }^{6+39.26 ~(H o r i z) ~}\) & Y & 37 & \(44 \mathrm{mph}(45)\) & & 350' (360) & & & 57 mph & \begin{tabular}{l}
- Barrier and retaining wall. \\
- A flatter curve can not be used since the alignment is parallel to the \\
SB CD Rd and I-75.
\end{tabular} & & Add Signage/Traffic Control Devices, wider shoulder \\
\hline
\end{tabular}

Brent Spence Bridge
Design Exceptions - Alternate E
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1-751-71 & Station & & & Design (Required) & \[
\begin{array}{|c}
\text { Horizontal } \\
\text { SSD } \\
\text { (Minimum) } \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\begin{array}{c}
\text { Horizontal } \\
\text { Dc } \\
\text { (Maximum) }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Vertical } \\
\text { Curvature } \mathrm{K} \\
\text { (Minimum) } \\
\hline
\end{gathered}
\] & Other & \[
\begin{array}{|c}
\text { Design } \\
\text { Speed } \\
\text { Existing }
\end{array}
\] & Reason For Design Exception & Potential Impact(s) to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline SB I-75 to Kyles Lane & Sta. \(445+00\) & Y & 1 & & & & & Grade & & - Proposed ramp grade is 8.1 percent due to right of way considerations. & - Extending the beginning of ramp futher south and thus widening the right of way limits required for the connection to the existing elevtion at the ramp terminal. & - This steep slope is less than 500 feet long and provides an exit ramp to Kyles Lane on which traffic has to decelerate \\
\hline \multirow[t]{2}{*}{NB CD Road} & Existing Bridge
(Lower Deck) & Y & 2 & & & & & Lane Width & & - 11 ' lanes needed to utilize the existing bridge width. & - Replace the existing bridge and rebuild structure to accommodate a wider section. & - Will be maintaining one \(12^{\prime}\) lane on the lower bridge deck \\
\hline & \[
\begin{gathered}
\text { Existing Bridge } \\
\text { (Lower Deck) } \\
\hline
\end{gathered}
\] & Y & 3 & & & & & Shoulder Width & & - A minimum 4' left shoulder and an 8 ' right shoulder are needed to maintain 3 through lanes and utilize the existing bridge width. & - Replace the existing bridge and rebuild structure to accommodate a wider section. & \\
\hline NB I-75 Mainline & Sta. \(571+00\) & Y & 4 & & & & & Shoulder Width & & - At this location, the southbound structure of the C-D road over I-75 The proposed pier diameter would be nine feet. This pier would reduce the inside shoulder widths from 14 feet to 9 feet around the pier and tapers. & Widen the overall footprint of roadway to accommodate pier diameter. & Add Signage to warn of reduced shoulder width. \\
\hline SB I-75 Mainline & Sta. \(571+00\) & Y & 5 & & & & & Shoulder Width & & - At this location, the southbound structure of the C-D road over I-75
would have a long span and require a pier located at the center of I-75. The proposed pier diameter would be nine feet. This pier would reduce the inside shoulder widths from 14 feet to 9 feet around the pier and tapers. & Widen the overall footprint of roadway to accommodate pier diameter. & Add Signage to warn of reduced shoulder width. \\
\hline
\end{tabular}

Brent Spence Bridge
Design Exceptions－Alternative I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1－71／I－75／US 50
INTERCHANGE & Station & & 毕离膏 & \[
\begin{array}{|c|}
\hline \text { Design Speed } \\
\text { Met } \\
\text { (Required) }
\end{array}
\] & \[
\begin{array}{|c}
\begin{array}{c}
\text { Horizontal } \\
\text { (Maximum) }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l}
\text { Horizontal } \\
\text { SsD } \\
\text { (Minimum) }
\end{array}
\] & \[
\begin{array}{|c}
\begin{array}{c}
\text { Vertical } \\
\text { Curvature - } \\
\text { (Minimum) }
\end{array} \\
\hline
\end{array}
\] & Other & \[
\begin{gathered}
\text { Design } \\
\text { Speed } \\
\text { Existing }
\end{gathered}
\] & Reason（s）For Design Exception & Potential Impact（s）to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline \multirow{4}{*}{Interstate 75 （OH）} & CURVE NO． 5 PI Sta． \(24+98.87\) （Horiz．） & Y & 1 & \(57 \mathrm{mph}(60)\) & & 526＇（570＇） & & & 44 mph & \begin{tabular}{l}
－The line of sight for the northbound inside lane is impeded by the median barrier and the southbound outside lane a the bridge parapet． \\
－The proposed \(12^{\prime}\)＇median shoulder（minimum）needs to be widened to 20 \\
to meet the needed sight distance． \\
－The median shoulder width was discussed with the Office of Roadway Engineering and a guideline was given to cap the width at \(12^{\prime}\) ．This is due to several factors；expense，excessively wide shoulders can confuse drivers and be used as a passing lane，and collecting debris．
\end{tabular} & \begin{tabular}{l}
－Widen the inside shoulder for the I－75 NB．This can be accomplished by either linearly transitioning the shoulder or separating the NB and SB horizontal alignments．The two profiles will be different as well and bifurcated barrier will be required．This will impact the potential connection from Clay \\
Wade Bailey Bridge to I－75． \\
－If this potential connection from Clay Wade Bailey Bridge is to be maintained，all NB alignments will need to shift to the East potentially causing vertical clearance issues with US 50 WB and I－71 SB．This would potentially \\
－If using a flatter curve 5 structur． \\
－If using a flatter curve， 5 structures（businesses）could potentially be \\
－A design speed of 55 MPH would also fix this design exception．
\end{tabular} & Add Signage／Lighting \\
\hline & Sta． \(23+00\) to Sta． \(27+00\)
（Southbound Only） & Y & 2 & & & & & \[
\begin{gathered}
6.0 \% \\
\text { (Downgrade) }
\end{gathered}
\] & & －A grade of \(6.0 \%(5.0 \% \mathrm{max}\) ）needed to achieve clearance over the existing railroad／l－71 SB to SB CD Road and under I－71 SB to SB CD Road to maintain a 60 mph design speed．The \(6.0 \%\) grade has a tangent length of 150＇． & －Shift SB CD Road alignment further West so that the lower deck does not cross under the upper deck until after the existing railroad．This would increase the impact to Longworth Hall and could potentially impact 4 additional buildings and parking． & \\
\hline & CURVE NO． 6 PI Sta．33＋88．15 （Horiz．） & Y & 3 & 51 mph （60） & & \(443^{\prime}(570)\) & & & 50 mph & \begin{tabular}{l}
－The line of sight for the inside lane is impeded by the median barrier \\
－The proposed \(12^{\prime}\) median shoulder needs to be widened to \(25^{\prime}\) to meet the \\
needed sight distance． \\
－The median shoulder width was discussed with the Office of Roadway Engineering and a guideline was given to cap the width at \(12^{\prime}\) ．This is due to several factors；expense，excessively wide shoulders can confuse drivers and \\
be used as a passing lane，and collecting debris． \\
－ 55 mph would require a 17 ＇minimum shoulder．
\end{tabular} & \begin{tabular}{l}
－Widen the inside shoulder for the I－75 NB．This can be accomplished by either linearly transitioning the shoulder or separating the NB and SB horizontal alignments．The two profiles will be different as well and bifurcated barrier will be required．This will impact the potential connection from Clay \\
Wade Bailey Bridge to I－75 \\
－If this potential connection from Clay Wade Bailey Bridge is to be mantained，all NB alignments will need to shift to the East potentially causing vertical clearance issues with US 50 WB and I－71 SB．This would potentially \\
pact the Dunnhumby Building also \\
－If using a flatter curve， 5 structures（businesses）could potentially be \\
impacted and additional impacts to Longworth Hall would be needed．
\end{tabular} & Add Signage／Lighting \\
\hline & \[
\begin{aligned}
& \text { CURVE NO. } 9 \\
& \text { PI Sta. } 65+12.82 \\
& \text { (Horiz.) }
\end{aligned}
\] & Y & 4 & \(52 \mathrm{mph}(60)\) & & 463＇（570） & & & 40 mph & \begin{tabular}{l}
－The line of sight for the outside lane is impeded by the roadside barrier． \\
－The proposed \(12^{\prime}\) outside shoulder needs to be widened to \(20^{\prime}\) to meet the \\
needed sight distance． \\
－ 55 mph would require a \(15^{\prime}\) shoulder（standard minimum shoulder is 12 ＇），
\end{tabular} & －The ramp from Freeman Ave to \(1-75 \mathrm{NB}\) and Winchell Ave would have to
shift to the East．This would impact the property on the SE corner of Ezzard
Charres Drive and Winchell Ave．
－There is also a potential impact to a 60 ＂combined sewer under Winchell
Ave．
－The Freeman Ave to Winchell Ave bridge and the Ezzard Charles Drive
bridges would need to be lengthened to span the additional pavement width．
－If using a flatter curve，this could potentially impact 8 structures，relocate
local roads（EEzard Charres Drive
road and WB，Winchell（Wese．），cut off 2 local
road Court Street and Freeman Ave to I－75 NB）． & Add Signage／Lighting \\
\hline 1－75 SB Baseline at Ezzard
Charles & CURVE NO． 16 PI Sta．65＋22．36 （Horiz．） & Y & 5 & \(54 \mathrm{mph}(60)\) & & \(488^{\prime}(570)\) & & & 40 mph & \begin{tabular}{l}
－The line of sight for the inside lane is impeded by the median barrier． \\
－The proposed \(12^{\prime}\) median shoulder needs to be widened to \(20^{\prime}\) to meet the \\
needed sight distance． \\
－The median shoulder width was discussed with the Office of Roadway \\
Engineering and a guideline was given to cap the width at \(12^{\prime}\) ．This is due to \\
several factors；expense，excessively wide shoulders can confuse drivers and \\
be used as a passing lane，and collecting debris． \\
－ 55 mph would require a \(13^{\prime}\) shoulder（standard minimum shoulder is \(12^{\prime}\) ）．
\end{tabular} & & Add Signage／Lighting \\
\hline
\end{tabular}

Brent Spence Bridge
Design Exceptions - Alternative I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
1-71/I-75/US 50 \\
INTERCHANGE \\
\hline
\end{tabular} & Station & & & Design Speed
Met
(Required) & \[
\begin{array}{|c|c}
\begin{array}{c}
\text { Horizontal } \\
\text { Dc } \\
\text { (Maximum) }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l}
\hline \begin{array}{c}
\text { Horizontal } \\
\text { sMs } \\
\text { (Minimum) }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\text { Vertical } \\
\text { Curvature - K } \\
\text { (Minimum) } \\
\hline
\end{array}
\] & Other & \[
\begin{gathered}
\text { Design } \\
\text { Speed } \\
\text { Existing }
\end{gathered}
\] & Reason(s) For Design Exception & Potential Impact(s) to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline \multirow{4}{*}{1-71 Southbound (OH)} & CURVE NO. 24 PI Sta. 16+31.45 (Horiz.) & Y & 6 & \(50 \mathrm{mph}(60)\) & \[
\begin{aligned}
& 6^{6} 33^{\prime} 00000 \\
& \left(4^{\circ} \cdot 15^{\prime} 00^{\prime \prime}\right)
\end{aligned}
\] & & & & 35 mph & - Curve needed to tie into existing Fort Washington Way footprint, avoid Dunnhumby building, and to tie into proposed new bridge before bridge abutment. & \begin{tabular}{l}
- Using Fort Washington Way (\(1-71 \mathrm{SB}\)) as a fixed tie in point, a 4 degree curve will require the new Ohio River Bridge crossing the river to move about \\
250' to the West. \\
- Additional potential impacts from this alignment change would include going through the Duke Energy substation. In addition, the I-75 centerline would also need to shift West possibly impacting half of the Longworth Hall and an additional 5 structures just to the west of \(1-75\) between 3rd Street and \\
9th Street which include two Duke Energy buildings, two UPS buildings, and \\
the former Harriet Beecher Stowe Elementary School (Fox 19) building. \\
- The curves (super transitions) from these alignment changes may also \\
extend onto the new Ohio River Bridge.
\end{tabular} & - Add Signage/Trafic Control Devices \\
\hline & CURVE NO. 24 PI Sta. 16+31.45 (Horiz.) & Y & 7 & \(42 \mathrm{mph}(60)\) & & \(339{ }^{\prime}(570)\) & & & 35 mph & \begin{tabular}{l}
- The line of sight for the inside lane is impeded by the bridge parapet. \\
- The proposed shoulder needs to be widened to meet the needed sight \\
distance therefore increasing the structure width. \\
- 50 mph would require a \(20^{\prime}\) shoulder (standard minimum shoulder is \(12^{\prime}\)).
\end{tabular} & \begin{tabular}{l}
- Widen inside shoulder to match the proposed bridge width (3 lanes and \(14^{\prime}\) shoulder). \\
- A flatter curve is not possible without introducing a curve starting around Plum Street and extending onto the new bridge which would also need to move west as described above. Some connections may potentially become a problem doing this (i.e. US 50) and using the existing bridge would be very difficult.
\end{tabular} & - Add Signage/ Lighting \\
\hline & & Y & 8 & & & & & Shoulder Width & & - Allows for a deceleration lane to be added to exit from I-71 SB to SB CD Road within the existing footprint of Fort Washington Way (4' left shoulder, 6.5' right shoulder for about 700'). & \begin{tabular}{l}
- Widen pavement width on outside of I-71 SB (Fort Washington Way) from \\
Elm Street to Central Ave. This will impact the Elm Street bridge and reduce \\
the 3rd Street on ramp to SB CD Road to 1 lane from 2 lanes.
\end{tabular} & - Add Signage/ Lighting \\
\hline & Sta. \(20+00\) to Sta. \(32+00\) & Y & 9 & & & & & \[
\begin{gathered}
5.9 \% \\
\text { (Upgrade) }
\end{gathered}
\] & & \begin{tabular}{l}
- A grade of 6.0\% (5.0 \% max) needed to achieve clearance over the existing railroad/l-71 SB to SB CD Road and under l-71 SB to SB CD Road to maintain a 60 mph design speed. \\
- This grade matches the existing profile set during the Fort Washington Way project. It allows for clearance over Plum Street, flood wall, future rail lines.
\end{tabular} & - A flatter grade of \(5.0 \%\) would create a clearance problem over the NB CD Road to 5 th Street resulting in the potential of this connection being cut off. & \\
\hline \multirow{3}{*}{1 1-71 Northbound (OH)} & \begin{tabular}{l}
CURVE NO. 20 \\
PI Sta. 14+44.56 (Horiz.)
\end{tabular} & Y & 10 & \(50 \mathrm{mph}(60)\) & \[
\left.\begin{array}{l}
6^{6} 33^{\prime} 00^{\prime \prime \prime} \\
4^{4} 95^{\prime} 00^{\prime \prime}
\end{array}\right)
\] & & & & 45 mph & - Curve needed to tie into existing bridge abutment and still tie in with US 50 EB before entering Fort Washington Way. & \begin{tabular}{l}
- Using Fort Washington Way (\(1-71 \mathrm{NB}\)) as a fixed tie in point and trying to \\
tie into the existing bridge, several connections would be lost. Connections off of the NB CD Road from Kentucky to I-71 NB and to 2nd Street would be the bridge if the existing profile is to be maintained. \\
- Another option using Fort Washington Way (\(1-71 \mathrm{NB}\)) as a fixed tie in point \\
and trying to tie into the new Ohio River Bridge, a 4 degree curve will require the new Ohio River Bridge crossing the river to move about 250 ' to the West
if we were to maintain all connections. Other connections including l-75 NB and SB, and NB CD Road would need to be investigated on whether their connections could be maintained
\end{tabular} & - Add Signage/Trafic Control Devices \\
\hline & CURVE NO. 20 PI Sta. 14+44.56 (Horiz.) & Y & 11 & \(44 \mathrm{mph}(60)\) & & \(358{ }^{\prime}(570)\) & & & 41 mph & \begin{tabular}{l}
- The line of sight for the inside lane is impeded by the bridge parapet. \\
- The proposed shoulder needs to be widened to meet the needed sight \\
distance therefore increasing the structure width. \\
- 50 mph would require a 20 ' shoulder (standard minimum shoulder is \(12^{\prime}\)).
\end{tabular} & \begin{tabular}{l}
- Widen inside shoulder with a pavement taper on the bridge. \\
- A flatter curve tying into the existing bridge is not possible without introducing a curve starting around Plum Street and extending onto the existing bridge. Second Street would need to be relocated along with the flood wall. Connections off of the NB CD Road from Kentucky to I-71 NB and to 2nd Street would be lost.
\end{tabular} & - Add Signage/ Lighting \\
\hline & Sta. \(25+00\) to Sta \(29+00\) & Y & 12 & & & & & \[
\begin{gathered}
6.0 \% \\
\text { (Downgrade) }
\end{gathered}
\] & & - A grade of \(6.0 \%\) (\(5.0 \% \mathrm{max}\)) needed to achieve clearance over Plum Street for pedestrians. The \(6.0 \%\) grade has a tangent length of about 300'. - This grade matches the existing profile set during the Fort Washington Way project. It allows for clearance over Plum Street, flood wall, future rail lines. & - A flatter grade of \(5.0 \%\) could potentially create a clearance problem over US 50 WB and 3rd Street. & \\
\hline \multirow[b]{2}{*}{US 50 EB} & CURVE NO. 47 PI Sta. 109773.97 (Horiz.) & Y & 13 & \(40 \mathrm{mph}(50)\) & & & & & 30 mph & - Curve needed to achieve clearance over SB CD Road and under US 50 to 5th Street & \multirow[b]{2}{*}{- See US 50 WB impacts.} & - Add Signage/Trafic Control Devices \\
\hline & \[
\begin{gathered}
\text { CURVE NO. } 47 \\
\text { PI Sta. } 109+73.97 \text { (Horiz.) }
\end{gathered}
\] & Y & 14 & \(36 \mathrm{mph}(50)\) & & \(261{ }^{1}(425)\) & & & 30 mph & - The line of sight for the inside lane is impeded by the bridge parapet. - The proposed shoulder needs to be widened to meet the needed sight reduce clearances over SB CD Road to 2nd Street to below minimum. & & - Add Signage/ Lighting \\
\hline
\end{tabular}

Brent Spence Bridge
Design Exceptions - Alternative I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 1-71/I-75/US } 50 \\
& \text { INTERCHANGE } \\
& \hline
\end{aligned}
\] & Station & & & Design Speed
Met
(Required) & \[
\begin{array}{|c|c}
\begin{array}{c}
\text { Horizontal } \\
\text { (Maximum) }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Horizontal } \\
\text { SsD } \\
\text { (Minimum) }
\end{gathered}
\] & Vertical
Curvature - K
(Minimum) & Other & \[
\begin{aligned}
& \text { Dign } \\
& \text { Speed } \\
& \text { Existing } \\
& \hline
\end{aligned}
\] & Reason(s) For Design Exception & Potential Impact(s) to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline \multirow{3}{*}{US 50 wb} & \[
\begin{aligned}
& \text { CURVE NO. } 53 \\
& \text { PI Sta. 114+02.58 } \\
& \text { (Horiz.) }
\end{aligned}
\] & Y & 15 & \(40 \mathrm{mph}(50)\) & \[
\begin{aligned}
& 10^{\circ} 30^{\prime} 00^{\prime \prime} \\
& \left(6^{\circ} 45^{\prime} 00^{\prime \prime}\right)
\end{aligned}
\] & & & & 35 mph & - Curve needed to achieve clearance over I-75 NB and under US 50 to 5 th Street & - Design exceptions \(9,10,11,12\), and 13 need to be treated as a whole in order to fix. To design an alignment to maintain a 50 mph design speed (existing US 50 posted speed West of I-75), the geometry would follow the proposed alignment shown for US \(50 \mathrm{~EB} / \mathrm{SB}\) CD to 2nd Street. US 50 EB would parallel US 50 WB in order to tie into existing US 50 lanes through Fort Washington Way to the East causing some connections to be lost. & - Add Signage/Trafic Control Devices \\
\hline & \[
\begin{aligned}
& \text { CURVE NO. } 53 \\
& \text { PI Sta. } 114+02.58 \\
& \text { (Horiz.) }
\end{aligned}
\] & Y & 16 & \(34 \mathrm{mph}(50)\) & & \({ }^{242}\) (425) & & & 30 mph & - The line of sight for the inside lane is impeded by the bridge parapet. - The proposed shoulder needs to be widened to meet the needed sigh distance therefore increasing the structure width. This potentially could reduce clearances over l-75 NB to below minimum & \begin{tabular}{l}
5 th Street, 2) \(I-75\) SB to \(1-71\) NB from I-75 mainline lanes, 3) SB CD Road to potential Clay Wade Bailey Bridge, 4) US 50 WB to Gest Street, 5) Linn Street to US 50 EB (would be significantly impacted if not cut off) which is beyond our current project limits. \\
- SB CD Road alignment would shift West approximately \(200^{\prime}\) which would impact the former Harriet Beecher Stowe Elementary School (Fox 19) building in addition to their parking garage and the UPS warehouse would also now be impacted in addition to their parking. In addition, the Duke
\end{tabular} & - Add Signage/ Lighting \\
\hline & CURVE NO. 56 PI Sta. 128+38.49 (Horiz.) & Y & 17 & \(40 \mathrm{mph}(50)\) & \[
\begin{aligned}
& 10^{\circ} 30^{\prime} 000 \\
& \left(6^{\circ} 45^{\prime} 00^{\prime}\right)
\end{aligned}
\] & & & & 35 mph & \begin{tabular}{l}
- Curve needed to avoid Dunnhumby building and achieve clearance under \\
71 SB
\end{tabular} & & - Add Signage/Traffic Control Devices \\
\hline
\end{tabular}

Brent Spence Bridge
Design Exceptions - Alternative I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1-71/I-75/US 50
INTERCHANGE & Station & & & Design Speed
Met
(Required) & \[
\begin{array}{|c}
\text { Horizontal } \\
\text { Dc } \\
\text { (Maximum) }
\end{array}
\] & \[
\begin{array}{|c|c|c|c|c|c|}
\hline \text { Horizontal } \\
\text { SMSD } \\
\text { (Minimum }
\end{array}
\] & \[
\begin{gathered}
\text { Vertical } \\
\text { Curvature - K } \\
\text { (Minimum) } \\
\hline
\end{gathered}
\] & Other & \[
\begin{gathered}
\text { Design } \\
\text { Speed } \\
\text { Spisting }
\end{gathered}
\] & Reason(s) For Design Exception & Potential Impact(s) to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline NB CD ROAD to l-75 NB (NB CD Road) & \begin{tabular}{l}
CURVE NO. 125 \\
PI Sta. 33+41.55 (Horiz.)
\end{tabular} & Y & 18 & \(41 \mathrm{mph}(50)\) & & \(315{ }^{\prime}(425)\) & & & N/A & - The line of sight is impeded by a roadside barrier and retaining wall. - The proposed shoulder needs to be widened to meet the needed sigh distance therefore increasing the structure length of 6 th Street to US 50 \(\stackrel{\text { WB. }}{\substack{\text { WB } \\-50 \\ \hline \\ \hline}}\) \(\qquad\) & \begin{tabular}{l}
- Widen inside shoulder by changing alignment. This could impact the NB CD Road to 5th Street alignment and an existing parking lot between 4th Street and Central Ave. \\
- Another way to possibly eliminate this DE would be to switch NB CD Road to US 50 WB and NB CD Road to \(1-75\) alignments. This may allow for a flatter curve but the connection from NB CD to US 50 WB would need to be investigated to see if it would work.
\end{tabular} & - Add Signage/Trafic Control Devices \\
\hline \(\underset{\text { (SB CD Road) }}{1-75 \text { SB to SB CD ROAD }}\) & Sta. \(26+00\) to Sta \(30+50\) & Y & 19 & & & & & \[
\begin{aligned}
& 6.50 \% \\
& \text { (Upgrade) }
\end{aligned}
\] & & - A grade of \(6.50 \%(5.0 \% \mathrm{max})\) needed to achieve clearance under US 50 EB and yet tie into the ramp from \(\mathrm{I}-71 \mathrm{SB}\) to SB CD Road. The \(6.50 \%\) grade has a tangent length of \(315^{\prime}\). & - Using a flatter grade potentially could impact US 50 EB to 5 th Street, US 50 EB , and US 50 WB to Gest Street clearances. & \\
\hline \multirow{3}{*}{\(1-75\) SB to - -71 NB} & \[
\begin{aligned}
& \text { CURVE NO. } 70 \\
& \text { PI Sta. 120+59.21 } \\
& \text { (Horiz.) }
\end{aligned}
\] & Y & 20 & \(43 \mathrm{mph}(45)\) & & 341' (360) & & & N/A & \begin{tabular}{l}
- The line of sight for the inside lane is impeded by the bridge parapet. \\
- The proposed shoulder needs to be widened to meet the needed sight \\
distance therefore increasing the structure width. \\
- 45 mph would require a \(8^{\prime}\) ' shoulder (standard minimum shoulder is \(4^{\prime}\), a
6 ' shoulder is used).
\end{tabular} & \begin{tabular}{l}
- Widen inside shoulder using a pavement taper. \\
- Using a flatter curve for sight distance may impact vertical clearance with 3 rd Street to I-75 NB, NB CD Road to US 50 WB, and I-71 SB. Also, impacts to the Dunnhumby building would need to be investigated.
\end{tabular} & - Add Signage/ Lighting \\
\hline & CURVE NO. 71
PI Sta. 125+75.61
(Horiz.) & Y & 21 & \(40 \mathrm{mph}(45)\) & \[
\begin{aligned}
& 10^{\circ} 30^{\prime} 00^{\prime \prime} \\
& \left(9^{\circ} 00^{\prime} 00^{\prime \prime}\right)
\end{aligned}
\] & & & & 40 mph & - Curve needed to avoid Dunnhumby building and achieve clearance under 1-71 SB. & - Using a flatter curve may impact vertical clearance with 3rd Street to I-75 NB, NB CD Road to US 50 WB, and I-71 SB. Also, impacts to the Dunnhumby building would need to be investigated. & - Add Signage/Trafic Control Devices \\
\hline & \[
\begin{aligned}
& \text { CURVE NO. } 71 \\
& \text { PI Sta. 125+75.61 } \\
& \text { (Horiz.) }
\end{aligned}
\] & Y & 22 & \(34 \mathrm{mph}(45)\) & & 240'(360) & & & 33 mph & \begin{tabular}{l}
- The line of sight for the inside lane is impeded by the bridge parapet. \\
- The proposed shoulder needs to be widened to meet the needed sight \\
distance therefore increasing the structure width. \\
- 45 mph would require a 22.5 ' \(^{\prime}\) shoulder (standard minimum shoulder is \({ }^{\prime}\). \({ }^{\prime}\) shoulder is used). \\
\(4^{\prime}\), a 6 ' shoulder is used).
\end{tabular} & \begin{tabular}{l}
- Widen inside shoulder using a pavement taper. \\
verical clearance with 3rd Street to I-75 NB, NB CD Road to US 50 WB, and l-71 SB. Also, impacts to the Dunnhumby building would need to be investigated.
\end{tabular} & - Add Signage/ Lighting \\
\hline \multirow{4}{*}{\[
\left.\right|_{\text {(Directional Ramp) }} ^{\text {1-71 SB to SB CD ROAD }}
\]} & CURVE NO. 108 PI Sta. 31+16.63 (Horiz.) & Y & 23 & \(35 \mathrm{mph}(45)\) & \[
\begin{aligned}
& 14^{\circ} 15^{\prime} 00^{\prime \prime} \\
& \left(9^{\circ} 00^{\prime} 00^{\prime \prime}\right)
\end{aligned}
\] & & & & N/A & - Curve needed to clear I-75 then tie into SB CD Road on the lower deck of the proposed bridge. & \begin{tabular}{l}
- A flatter curve could impact 3 structures including additional impact to Longworth hall. \\
- Other potential impacts may occur to the North when southbound alignments are adjusted to tie into flatter curve.
\end{tabular} & - Add Signage/Trafic Control Devices \\
\hline & CURVE NO. 108 PI Sta. 31+16.63 (Horiz.) & Y & 24 & \(31 \mathrm{mph}(45)\) & & 213 ' (360) & & & N/A & \begin{tabular}{l}
- The line of sight for the inside lane is impeded by the bridge parapet. \\
- The proposed shoulder needs to be widened to meet the needed sight distance therefore increasing the structure width.
\end{tabular} & & \\
\hline & \[
\begin{aligned}
& \text { CURVE NO. } 111 \\
& \text { PI Sta. } 34+50.75 \\
& \text { (Horiz.) }
\end{aligned}
\] & Y & 25 & \(35 \mathrm{mph}(45)\) & \[
\begin{aligned}
& 14^{\circ} 30^{\prime} 00^{\prime \prime} \\
& \left(9^{\circ} 00^{\prime} 00^{\prime \prime}\right)
\end{aligned}
\] & & & & N/A & - Curve needed to avoid Dunnhumby building, structure on NE corner of Central Ave. and 3rd Street, and tie into I-71 SB & - If using a flatter curve, 3rd Street ramp to SB CD Road might be cut off, 2 structures may be impacted, and Fort Washington Way would need to be widened at the West end of the trench. & - Add Signage/Trafic Control Devices \\
\hline & CURVE NO. 111
PI Sta. \(34+50.75\) (Horiz.) & Y & 26 & \(31 \mathrm{mph}(45)\) & & \(213{ }^{\prime}(360)\) & & & N/A & - The line of sight for the inside lane is impeded by the bridge parapet. - The proposed shoulder needs to be widened to meet the needed sight distance therefore increasing the structure width. & \begin{tabular}{l}
- Widen inside shoulder. \\
- Widening the inside shoulder would reduce the width of the 3rd Street to SB CD Road ramp. \\
- If using a flatter curve, 3rd Street ramp to SB CD Road might be cut off, 2 structures may be impacted, and Fort Washington Way would need to be widened at the West end of the trench.
\end{tabular} & - Add Signage/ Lighting \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
1-71 SB/US 50 WB to NB CD ROAD \\
(Directional Ramp)
\end{tabular}} & CURVE NO. 121 PI Sta. 17+51.02 (Horiz.) & Y & 27 & \(40 \mathrm{mph}(45)\) & \[
\begin{aligned}
& 11^{\circ} 45^{\prime} 00^{\prime \prime} \\
& \left(9^{\circ} 00^{\prime} 00^{\prime \prime}\right)
\end{aligned}
\] & & & & 35 mph & - Curve needed to achieve clearance under \(1-71 \mathrm{SB}\) and avoid the Dunnhumby building. & \begin{tabular}{l}
- If using a flatter curve, l-71 SB would be shifted North through the \\
Dunnhumby building so that clearance under \(\mathrm{I}-71 \mathrm{SB}\) can be maintained. \\
- Shifting \(1-71\) SB would also reduce the design speed for \(1-71\) SB unless
the proposed \(1-75\) mainline bridge is shifted further West.
\end{tabular} & - Add Signage/Trafic Control Devices \\
\hline & CURVE NO. 121 PI Sta. 17+51.02 (Horiz.) & Y & 28 & \(33 \mathrm{mph}(45)\) & & \(230^{\prime}(360)\) & & & 35 mph & \begin{tabular}{l}
- The line of sight for the inside lane is impeded by the bridge parapet. \\
- The proposed shoulder needs to be widened to meet the needed sight distance therefore increasing the structure width.
\end{tabular} & \begin{tabular}{l}
- Widen inside shoulder. \\
- There is a potential impact to the vertical minimum clearance under I-71 \\
SB if the shoulder is widened
\end{tabular} & - Add Signage/ Lighting \\
\hline
\end{tabular}

Brent Spence Bridge
Design Exceptions - Alternative I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\left\lvert\, \begin{aligned} & 1-7111-75 / U S \\ & \text { INTERCHANGE }\end{aligned}\right.\) & Station & & 产 & \[
\begin{array}{|c|}
\hline \text { Design Speed } \\
\text { Mete } \\
\hline \text { (Required) }
\end{array}
\] & \[
\begin{array}{|c}
\text { Horizontal } \\
\text { Dc } \\
\text { (Maximum) }
\end{array}
\] & \[
\begin{aligned}
& \text { Horizontal } \\
& \text { ssod } \\
& \text { (Minimum) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Vertical } \\
\text { Curvature - K } \\
\text { (Minimum) }
\end{gathered}
\] & Other & \[
\begin{gathered}
\text { Design } \\
\text { Speed } \\
\text { Existing }
\end{gathered}
\] & Reason(s) For Design Exception & Potential Impact(s) to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline 3 3rd Street WB (OH) to SB CD & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 3rd StreetClay Wade Bailey to & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline US 50 WB to GEST ST. & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 6th Street WB (OH) to US 50
WB & & N & & & & & & & & & & \\
\hline 4th Street WB (OH) to NB CD & & N & & & & & & & & & & \\
\hline ROAD & & & & & & & & & & & & \\
\hline & CURVE NO. 63 PI Sta. 22+70.83 (Horiz.) (NB CD Road) & Y & 29 & \(44 \mathrm{mph}(50)\) & & 354' (425) & & & N/A & \begin{tabular}{l}
- The line of sight for the inside lane is impeded by the bridge parapet. \\
- The proposed shoulder needs to be widened to meet the needed sight \\
distance therefore increasing the structure width. \\
- 50 mph would require a 17 ' shoulder (standard minimum shoulder is \\
10').
\end{tabular} & - Widen the inside shoulder. This may impact the clearance over 4th Street to NB CD Road ramp. & - Add Signage/ Lighting \\
\hline NB CD ROAD to US 50 WB (Directional Ramp) & CURVE NO. 66 PI Sta. 33+69.33 (Horiz.) (Directional Ramp) & Y & 30 & \(40 \mathrm{mph}(45)\) & \[
\begin{aligned}
& 11^{\circ} 45^{\prime} 00^{\prime \prime} \\
& \left(9^{\circ} 00^{\prime} 00^{\prime \prime}\right)
\end{aligned}
\] & & & & 35 mph & - Curve needed to tie into 6 th Street to US 50 WB and clear 4th Street to NB CD Road. & - A flatter curve could require the 4 th Street NB on ramp to be relocated from its current alignment creating weaving on the NB CD Road. The ramp from US 50 WB to Gest Street potentially could be cut off also if US 50 WB
would also need to be flattened. & Add Signage/Trafic Contro Devices \\
\hline & CURVE No. 66 PI Sta. 33+69.33 (Horiz.) (Directional Ramp) & Y & 31 & \(33 \mathrm{mph}(45)\) & & 236' (360) & & & 32 mph & \begin{tabular}{l}
- The line of sight for the inside lane is impeded by the bridge parapet. \\
- The proposed shoulder needs to be widened to meet the needed sight distance therefore increasing the structure width. \\
- 45 mph would require a \(26^{\prime}\) shoulder (standard minimum shoulder is \(4^{\prime}\), \\
a 6 ' shoulder is used).
\end{tabular} & \begin{tabular}{l}
- Widen the inside shoulder. \\
- A flatter curve could require the 4 th Street NB on ramp to be relocated from its current alignment creating weaving on the NB CD Road. The ramp from US 50 WB to Gest Street potentially could be cut off also if US 50 WB would also need to be flattened.
\end{tabular} & - Add Signage/ Lighting \\
\hline & & & & & & & & & & & & \\
\hline (OH) & & N & & & & & & & & & & \\
\hline & \[
\begin{gathered}
\text { Sta. } 27+80 \mathrm{Rt} \\
(1-71 \mathrm{NB})
\end{gathered}
\] & Y & 32 & & & & & Shoulder Width & N/A & \begin{tabular}{l}
- < 8' min due to flood wall. \\
- A 39:1/acceleration lane taper Sta. \(14+75\) to Sta. \(30+00(1-71 \mathrm{NB})\) is \\
needed to minimize the impact to the flood wall/l-71 (FWW) and maintain a \\
\(4^{\prime}\) minimum shy line from the roadside barrier.
\end{tabular} & - If a \(50: 1\) taper is used \(\mathrm{I}-71\) in the trench will need to be widened just to maintain a 4 foot shoulder. & \\
\hline (Directional Ramp) & Sta. 9+50 & Y & 33 & & & & & \[
6.69 \%
\]
(Upgrade) & & - A grade of \(6.69 \%(5.0 \%\) max) needed to achieve clearance under \(1-71\) NB (upper deck) and yet tie into I-71 NB before entering the Fort Washington Way trench and to clear the existing railroad. The \(6.69 \%\) grade does not have a tangent length, the vertical curves are reverse curves. & - A flatter grade would violate railroad clearance if existing vertical curve on the existing bridge is to be maintained. & \\
\hline NB CD ROAD to 2nd Street EB (OH) & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 6 th Street WB \((\mathrm{OH})\) to WINCHELL AVE & & N & & & & & & & & & & \\
\hline 9th street to 6 th connector to & & N & & & & & & & & & & \\
\hline Winchell & & & & & & & & & & & & \\
\hline Gest St/Freeman Ave to & & N & & & & & & & & & & \\
\hline Winchell Ave & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline SB CD ROAD to 7th Street & & & & & & & & & & & & \\
\hline (OH) & & N & & & & & & & & & & \\
\hline
\end{tabular}

Brent Spence Bridg
Design Exceptions - Alternative I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 1-711 /-75 / \text { US } 50 \\
& \text { INTERCHANGE } \\
& \hline
\end{aligned}
\] & Station & & & Design Speed
Met
(Required) & \[
\begin{gathered}
\text { Horizontal } \\
\text { (Maximum) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Horizontal } \\
\text { SSD } \\
\text { (Minimum) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Vertical } \\
\text { Curvature - K } \\
\text { (Minimum) }
\end{gathered}
\] & Other & \[
\begin{gathered}
\text { Design } \\
\text { Speed } \\
\text { Existing }
\end{gathered}
\] & Reason(s) For Design Exception & Potential Impact(s) to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline SB CD RD to Gest StFreeman & & N & & & & & & & & & & \\
\hline & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \begin{tabular}{l}
Western Ave (OH) to \\
ROAD
\end{tabular} & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline SB CD ROAD to 5th Street (OH) & & Y & 34 & & & & & 7.5\% upgrade & & ```
- Sta. \(26+10\) to Sta. \(32+60\) (Vertical, \(7.0 \%\) max) a grade of \(7.5 \%\) is needed to achieve clearance under US 50 WB and over I-75 SB to I-71 NB.
``` & \begin{tabular}{l}
- Flattening the vertical curve will impact the clearance over \(1-75 \mathrm{SB}\) to \(\mathrm{I}-\) 7NB. Either the SB CD Road to 5 th Street or \(1-75\) SB to \(1-71\) NB alignment will potentially be cut of and trafic will need to be directed another way \\
- If the connections are to be maintained, raising the US 50 WB profile would be an alternate but there may be a potential that U 50 WB to Gest
Street may be cut off due to the higher profile. Changing the profies for \(N\) I CD Road to US 50 WB and 6 th Street to US 50 WB will also need to be investigated.
\end{tabular} & - Add Signage/Traffic Control Devices \\
\hline CD ROAD to 2nd ST. (OH) & & & & & & & & & & & & \\
\hline SB CD ROAD to 2nd ST. (OH) & & N & & & & & & & & & & \\
\hline & & N & & & & & & & & & & \\
\hline SB CD ROAD to 3rd ST. (OH) & & & & & & & & & & & & \\
\hline 9th Street ( OH ) to SB CD & & & & & & & & & & & & \\
\hline ROAD & & N & & & & & & & & & & \\
\hline & \[
\begin{gathered}
\hline \text { CURVE NO. } 85 \\
\text { PI Sta. 108+02.34 } \\
\text { (Horiz.) } \\
\hline
\end{gathered}
\] & Y & 35 & \(40 \mathrm{mph}(45)\) & \[
\begin{aligned}
& 10^{\circ} 45^{\prime} 00^{\prime \prime} \\
& \left(9^{\circ} 00^{\prime} 00^{\prime}\right)
\end{aligned}
\] & & & & N/A & - Diverging curvature per table \(505-2 \mathrm{a}\) is not met. & - Flattening the curve in gore area could increase impacts to the UPS warehouse, cut off on ramp from Linn Street, and create a pavement taper on the new Ohio River Bridge. & - PI Sta. 29+81.48 (Horiz.) Exit Geometry \\
\hline 50 EB to SB CD ROAD & \[
\begin{aligned}
& \text { CURVE NO. } 85 \\
& \text { PI Sta. 108+02.34 } \\
& \text { (Horiz.) }
\end{aligned}
\] & Y & 36 & \(34 \mathrm{mph}(45)\) & & \(246{ }^{\prime}(360)\) & & & N/A & - The line of sight for the inside lane is impeded by the bridge parapet. - The proposed shoulder needs to be widened to meet the needed sight distance therefore increasing the structure width. & - Widen shoulder which could potentially increase impact to the UPS Building and increase retaining wall heights. & - Add Signage/Traffic Control Devices \\
\hline & & & & & & & & & & & & \\
\hline US 50 EB to 2ND ST (OH) & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline US 50 EB to 5 TH ST ( OH ) & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 1-71/I-75/US } 50 \\
& \text { INTERCHANGE } \\
& \hline
\end{aligned}
\] & Curve PI &  &  & \[
\begin{aligned}
& \text { Design } \\
& \text { Speed Met } \\
& \text { (Required) }
\end{aligned}
\] & \[
\begin{array}{|c}
\hline \text { Horizontal } \\
\text { SSD } \\
\text { (Minimum) }
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Horizontal } \\
\text { Dc } \\
\text { (Maximum) } \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
\text { Vertical } \\
\text { Curvature - K } \\
\text { (Minimum) } \\
\hline
\end{array}
\] & Other & \[
\begin{aligned}
& \text { Design } \\
& \text { Speed } \\
& \text { Existing }
\end{aligned}
\] & Reason For Design Exception & Potential Impact(s) to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline Third Street (OH) & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline Central Avenue ( OH ) & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline Seventh Street ( OH ) & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline Ninth Street (OH) & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline Linn Street ( OH ) & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline NB CD ROAD to Winchell Ave & PI Sta. \(65+75.00\) (Verical) & Y & 37 & \(31 \mathrm{mph}(40)\) & & & 39 (44) - crest & & N/A & - Curve needed to be able to tie profile in from NB CD Road to Winchell Ave. & \begin{tabular}{l}
- To fix, the horizontal alignment would need to be adjusted for three connections (NB CD Road to Winchell Ave., 6th Street to Winchell Ave. and W. Court Street.). \\
- Moving these alignments could potentially impact 7 structures along Winchell Ave. and W. Court Street.
\end{tabular} & \begin{tabular}{l}
- Add Signage/ Lighting \\
- Vertical Curve 2.0 times the minimum length needed.
\end{tabular} \\
\hline (Local) & PI Sta. \(69+20.00\) (Verical) & Y & 38 & \(31 \mathrm{mph}(40)\) & & & 39 (64) - sag & & N/A & - Vericical curve used to match existing profile. & - Fill in the sag point which may impact neihboring apartment building. & \begin{tabular}{l}
- Add Signage/ Lighting \\
- Vertical Curve 2.0 times the minimum length needed.
\end{tabular} \\
\hline & & & & & Existing poste & dspeed limit on & Winchell Ave. is & & & & & \\
\hline Gest Street ( OH ) & CURVE NO. 192 PI Sta. 14+34.53 (Horiz.) & Y & 39 & \(30 \mathrm{mph}(40)\) & 207 ' (305) & & & & 33 mph & \begin{tabular}{l}
- The line of sight is impeded by a roadside barrier and retaining wall. \\
- The proposed shoulder needs to be widened to meet the needed sight distance therefore increasing the structure length of 7 th and 9 th streets.
\end{tabular} & \begin{tabular}{l}
- Widen shoulder using a pvement taper. \\
- Flattening the curve could potentially impact a hotel parking garage. \\
- Extend overhead bridges to set abutments outside of the clear zone \\
so that ne barrier is needed.
\end{tabular} & - Add Signage/ Lighting \\
\hline John St. & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline West Court St. & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline Ezzard Charles WB & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline Ezzard Charles EB & & N & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
\(\mathrm{N} / \mathrm{A}=\mathrm{Not}\) Applicable
Design Speed for Interstate is 60 mph and ramps per \(503-1\)

Design Exceptions - Alternative I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1.751/-71 & Station &  &  & Design Speed Met (Required) & \[
\begin{array}{|c}
\hline \text { Horizontal } \\
\text { SSD } \\
\text { (Minimum) } \\
\hline
\end{array}
\] & Horizontal
Dc
(Maximum) & \[
\begin{gathered}
\text { Vertical } \\
\text { Curvature - K } \\
\text { (Minimum) }
\end{gathered}
\] & Other & \[
\begin{array}{r}
\begin{array}{c}
\text { Design } \\
\text { Speed } \\
\text { Existing } \\
\hline
\end{array} \\
\hline
\end{array}
\] & Reason For Design Exception & Potential Impact(s) to Eliminate Design Exceptions & Potential Mitigation Solutions \\
\hline SB I-75 to Kyles Lane & Sta. \(445+00\) & Y & 40 & & & & & Grade & & - Proposed ramp grade is 8.1 percent due to right of way considerations. & - Extending the beginning of ramp futher south and thus widening the right of way limits required for the connection to the existing elevtion at the ramp terminal. & - This steep slope is less than 500 feet long and provides an exit ramp to Kyles Lane on which traffic has to decelerate. \\
\hline & \[
\begin{gathered}
\hline \text { Existing Bridge } \\
\text { (Lower Deck) } \\
\hline
\end{gathered}
\] & Y & 41 & & & & & Lane Width & & - 11 ' lanes needed to utilize the existing bridge width. & - Replace the existing bridge and rebuild structure to accommodate a wider section. & - Will be maintaining one 12 ' lane on the lower bridge deck. \\
\hline & Existing Bridge (Lower Deck) & Y & 42 & & & & & Shoulder Width & & - A minimum \(4^{\prime}\) left shoulder and an 8 ' right shoulder are needed to maintain 3 through lanes and utilize the existing bridge width. & - Replace the existing bridge and rebuild structure to accommodate a wider section. & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}```


[^0]:    All numbers $\times 1000$

[^1]:    LANE LINE

